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ABSTRACT

Lake Butrinti, located near Saranda in southern Albania, is a unique brackish
lagoon shaped by tectonic activity and characterized by significant ecological,
historical, and economic value. Its distinct nature has sparked scientific interest in
understanding the factors that influence water quality and the lagoon’s capacity
to support diverse life forms. This paper reviews the findings on water quality
based on physical (temperature, turbidity, salinity, and pH), chemical (oxygen,
OD, COD, BOD, nitrites, nitrates, phosphates, heavy metals, pesticides, and
organic matter), and biological indicators (phytoplankton chlorophyll a, Carlson
Trophic State Index-TSIC, biomass, and cytotoxicity testing via bio-reporting
bacteria). The data reported data were organized to depict annual, seasonal, and
spatial dynamics more clearly. Furthermore, the methodologies applied to assess
phytoplankton diversity, including microscopy, chemotaxonomy, specific-PCR,
CARD-FISH, and sequencing, are reviewed, with a discussion of their respective
advantages and limitations. The findings indicate that anthropogenic activities,
including past interventions in the hydrological network, fishing practices,
commercial aquaculture, and pollution, along with the effects of climate change,
have negatively impacted the lagoons on phytoplankton diversity, and their
advantages versus limitations were discussed. In conclusion, anthropogenic
activities (former interventions in the hydrological network, fishing, commercial
aquaculture farming, and water pollution) have negatively impacted the lagoon's
physical, chemical, and biological integrity. To prevent significant ecological and
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socio-economic consequences, such as dystrophic crises, reduced fishing and
mussel production, ecological degradation, biodiversity loss, and decreased
aesthetic value, there is a pressing need for more comprehensive and systematic
research. Such research should employ both conventional and advanced methods
to monitor changes, mitigate adverse effects, and safeguard the ecological
integrity and economic sustainability of the lake.

Keywords: Albanian lagoons, physic-chemical parameters, algal bloom,
analytical methods

1. INTRODUCTION

Lake Butrinti is a unique brackish lagoon shaped by tectonic activity
and is characterized by significant ecological, historical, and economic
importance. Covering an area of approximately 16.3 km? with an average
depth of 14 m (Topi et al. 2013c; Guri et al. 2014), it receives freshwater
from the Pavllo and Bistrica rivers and saltwater from the lonian Sea
through the Vivari Canal. The lake is also connected to Lake Bufi via the
Rreza/Bufi Canal, with the surrounding bedrock primarily composed of
limestone (Hounslow and Chepstow-Lusty, 2004). Subterranean springs
emerge along the eastern lakeshores, and two pumping stations discharge
drainage waters from the Vurgu and Vrina plains at Manastiri (northern
shore) and Dajlani (southern shore), respectively (Miho et al. 2013). The
lagoon is a vital ecosystem supporting rare habitats and biodiversity (Miho,
1994; Miho and Witkowski, 2005; Bego and Malltezi, 2010; Bushati,
2013; Miho et al. 2013), with the cultivation of Mytilus galloprovincialis
playing a key role in the local economy (Bego and Malltezi, 2010; Miho
et al. 2013). The area holds outstanding cultural value and is protected
under national and international legislation, including its designation as a
UNESCO World Heritage Site (UNESCO, Topi et al. 2013b). Moreover,
Lake Butrinti forms a core component of the Ramsar transitory-marine
area of Cuka Channel-Butrinti-Stillo Cape (13,500 ha; DCM 531/2002;
Site N0.1290, 28.3.2003).

However, increasing anthropogenic pressures, including the diversion
of the Bistrica River in the late 1950s, waste disposal, and growing
tourism, have exacerbated environmental stress (Miho 1994; Xhulaj et al.,
2008). River diversion and reclamation of the Vurgu Plain significantly
reduced the surface area of Lake Butrinti and its associated wetlands,
decreased freshwater input, and led to increased mineralization of the
lagoon. Consequently, Butrinti is classified as a meromictic lake with long-
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standing water stratification (epilimnion and hypolimnion) and a history of
anoxic conditions that facilitate hydrogen sulfide (H:S) accumulation,
limiting benthic life (Pano, 1984; Miho, 1994; Moisiu et al. 2016; Bacu
and Zaho, 2022).

2. MATERIALS AND METHODS

This review synthesizes findings on water quality based on physical
(temperature, turbidity, salinity, and pH), chemical (oxygen, OD, COD,
BOD, nitrites, nitrates, phosphates, heavy metals, pesticides, and organic
matter), and biological parameters (phytoplankton chlorophyll a, Carlson
Trophic State Index — TSIC, biomass, and cytotoxicity testing using bio-
reporting bacteria). Data were collected from studies conducted over the
past decades, including Pano (1984), Miho (1994), Hounslow and
Chepstow-Lusty (2004), Miho and Witkowski (2005), Xhulaj et al. (2008),
Bego and Malltezi (2010), Miho et al. (2013), Bushati (2013), Topi et al.
(2013 a), Guri et al. (2014), Moisiu et al. (2016), and Bacu and Zaho
(2022), among others. The reviewed data are presented in a structured
format to facilitate a clearer depiction of the annual, seasonal, and spatial
dynamics of these parameters. Additionally, methodologies previously
employed for phytoplankton diversity assessment, including microscopy,
chemotaxonomy, specific PCR, CARD-FISH, and sequencing, are
examined. Their respective capacities and limitations are critically
discussed, drawing on findings from Bacu et al. (2022), Bacu and Zaho
(2022), Bacu et al. (2024), Omeri et al. (2024), and other relevant studies.

An overview on physical and chemical characteristics of waters
and sediments

Physical characteristics

Butrinti region has a typical Mediterranean climate, which is reflected
in both water temperature (Table 1) and precipitation patterns (Dedej and
Bino, 2003; Topi et al. 2013(c); Velaj, 2015).

Table 1. Epilimnion temperature (°C) of Lake Butrinti

References Year of measurement Winter- Spring-
autumn summer
Osmani Miri 2012 9°C 28°C
and Peja, 2012
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Bushati, 2013 2006-2010 6°C 28°C
NEA 2015 2013 19.3°C 24.2°C

Rainfall is abundant, with higher levels occurring in autumn and
winter and lower levels in spring and summer. The annual average
precipitation is approximately 1,500 mm (Miho, 1994; Dedej and Bino,
2003; Bego and Malltezi, 2010; Zotaj, 2010; Topi et al. 2013a; Pano, 2015;
Velaj, 2015).

The tidal cycle at Lake Butrinti follows a six-hour periodicity (Pano,
2015). However, hydrometeorological factors, including components of
the water balance, wind regime, and wave dynamics, also influence water
level oscillations. These factors do not affect not the pattern of fluctuations,
but their amplitude.

Owing to its connection with the lonian Sea, Lake Butrinti is
influenced by marine winds, with average speeds of 3.2-3.5 m/s in winter
and 2.2-2.3 m/s in summer (Bego and Malltezi, 2010; Topi et al. 2013c;
Zotaj, 2010).

Water transparency (Table 2) varies in response to rainfall, wind
intensity, and plankton growth (Miho, 1994; Bushati, 2013; Miho et al.
2013). The highest transparency values are generally recorded during
winter, late spring, and early summer (Bushati, 2013).

Table 2. Transparency of the Lake Butrinti based on Secchi disc
measurements (m)

References Depth (m)
Miho, 1994; Bushati, 2013 0.8/1-4
Pano, 2015 0.8-3.2
Heywood, 2017 28-3
Cako et al. 2013 1.85-4.32

The sediment archive of Lake Butrinti provides evidence of variations
in the Mediterranean climate and anthropogenic impacts on the lake's
trophic status and hydrology. Lake sediments are excellent recorders of
environmental change, capturing signals from within the basin and from
the surrounding catchment. When coupled with robust chronological
constraints, lacustrine sediment archives can effectively reveal climatic,
human, and tectonic influences on the environment (Xhulaj et al. 2008;
Ariztegui et al. 2010). Sediments consist primarily of carbonates, organic
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matter, and clay layers (Morellén et al. 2016) and are characterized by
finely stratified silt resulting from the seasonal deposition of calcite, which
is rich in organic materials and clays. The presence of heavy metals in lake
sediments has also been investigated by Topi et al. (2012) and Omeri et al.
(2024).

Organic carbon (Corg) levels in the sediments exhibited an average
value of 1.792 + 0.336% dry weight (d.w.), while total nitrogen (TN)
averaged 0.197 % 0.043% d.w. Their spatial distribution is relatively
uniform between the northwestern and southeastern regions of the lagoon
(Moisiu et al. 2016).

Chemical characteristics

The salinity of Lake Butrinti is influenced by its connection with the
lonian Sea through the Vivari Canal, contact with Lake Bufi, freshwater
inflows from the Bistrica and Pavllo rivers, and precipitation and
evaporation processes (Miho et al. 2013; Pano, 1984; 2015). Reported
salinity values vary among authors (Tables 3 and 4); however, a consistent
finding is that salinity increases with depth (Pano, 1984; Miho, 1994; Pano,
2015; Moisiu et al. 2016). Seasonal variation is also evident, with higher
salinity values observed during summer compared than in winter (Pano,
1984; Dedej and Bino, 2003; Miho et al. 2013). In the epilimnion, salinity
ranges from 14-35%o, reaching maximum levels in late summer and
minimum levels in winter. Below a depth of 6 m, salinity remains
consistently higher, between 20-35%o. In contrast, salinity in the adjacent
seawaters is significantly higher, ranging from 30.4%o at the surface to
40.9%o at a depth of 5 m (Miho, 1994; Bushati, 2013; Miho et al. 2013).

Table 3. Salinity (%o) in hypolimnion and epilimnion

References Hypolimnion Epilimnion
(under 6 meter) (surface waters)
Miho, 1994 35.1%o 18%o
Anonymous, 2010; Miho et 20-35%o 14-35%o
al. 2013
Moisiu et al. 2016 35%o 24.3%0
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Table 4. Salinity (%o) in summer and winter

References Summer Winter
Pano, 1984 26%o 13%o
Dedej and Bino, 2003 33%o 15%o

pH

The waters of Lake Butrinti are slightly alkaline (Table 5). Generally,
alkalinity is lower during summer compared to winter, as reported by
Dedej and Bino (2003), Miho et al. (2013), and Heywood (2017), with
some exceptions noted by Pano (1984). Regarding vertical distribution, pH
values tend to decrease from the surface to greater depths (Pano, 1984;
Miho, 1994; Bushati, 2013).

Table 5. Epilimnion pH values during winter and summer at Lake

Butrinti
References Summer Winter
Pano 1984; Miho 1994; 8.7 7.9
Bushati 2013
Miho et al., 2013; Dedej 6.5 9.5
and Bino 2003
NEA, 2015 7.18 8.53
Cako et al., 2013 7.8 8.08

Oxygen, COD, BOD and TOC

The oxygen levels in Lake Butrinti are influenced by multiple factors,
including gas exchange, photosynthesis (Pano, 2015), wind, and
temperature (Pano, 1984; Gabeira, 2023). Seasonal trends show that
dissolved oxygen (DO) concentrations are generally higher in winter than
in summer (Pano, 1984; Miho, 1994; Miho et al. 2013), and that DO levels
decrease with depth (Table 6). Miho et al. (2013) stated that epilimnion
waters are consistently well oxygenated, often exhibiting saturation levels
above 100%, with maxima recorded in late winter and early spring.
However, below depths of 4-5 m, oxygen levels decline to less than 50%,
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and at 6-8 m, they drop further, oscillating between 0 and 2 mg/L. In
contrast, the hypolimnion is characterized by the presence of hydrogen
sulfide (H2S) and the absence of oxygen (Miho, 1994; Dedej and Bino,
2003; Bushati, 2013; Pano, 2015; Velaj, 2015).

Table 6. Oxygen level in different depths of Lake Butrinti

References Epilimnion 5m 6-8 m 10 m and below
Miho et al. 2013; 5 mg/l 14 0-3 mg/l 0
Bushati 2013 mg/I|
Dedej and Bino, 8-9 mg/l 0 0
2003

The chemical oxygen demand (COD) in Lake Butrinti ranged from
1.52 to 9.04 mg/L across the surface, mid-depth, and bottom layers,
indicating poor water quality according to the Norwegian Water Institute
(NIVA) classification (6.5-15 mg/L) (Heywood, 2017). The biological
oxygen demand (BOD) ranged from 0.5 to 1.25 mg/L, reflecting moderate
water quality. For 2023-2024, the maximum COD values were recorded
in September, with minimum values observed in April. BOD peaked in
November and reached its lowest value in March (Omeri et al. 2024).
Organic matter concentrations ranged from 2 to 17 mg/L (Dedej and Bino,
2003), with higher levels in April than in August, suggesting that
phytoplankton are the principal contributors to organic matter production
during the spring season (Miho et al. 2013).

Nutrients (N and P)

Phosphorus is a key limiting nutrient for aquatic organisms; at elevated
concentrations, it can be harmful by promoting eutrophication and algal
blooms in coastal transitional waters such as Lake Butrinti. Consequently,
phosphate levels in natural waters are among the most critical
environmental concerns. Many regulations focus on limiting total
phosphorus concentrations to prevent harmful algal blooms and maintain
water quality, with typical standards ranging from 0.01 - 0.10 mg/L (Boyd
2001). However, data on nutrient content (N and P) in Lake Butrinti are
limited and sporadic. Heywood (2017), based on the Official Environment
Report of Albania (2014), reports total phosphorus concentrations from
0.03 to 0.35 mg/L during monitoring in 2013 (two seasonal phases).
Nitrate (N-NOs) values ranged from 0.1 to 1.6 mg/L, whereas nitrite (N—
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NO:) values ranged from 0.01 to 0.02 mg/L. Despite limited data, the
phosphate concentrations often exceed 0.1 mg/L.

Kolitari et al. (2013) documented a significant increase in nitrite and
phosphate levels between 2004 and 2011, with nitrite peaking in June and
phosphate in October. High nutrient concentrations, combined with
elevated temperatures, evaporation, limited water exchange, and low flow
conditions, particularly in summer, likely contribute to dystrophic crises
and periodic mussel die-offs. This situation may worsen due to nutrient
leaching from increasing agricultural and urban activities in the catchment
areas, including the Vurgu and Vrina plains and the urban centers of
Ksamil and Manastiri, where untreated waters are discharged into the lake
via the Manastiri and Dajlani pumping stations.

Table 7. Nutrient (N and P) presence at surface waters of Butrinti

Heywood 2017 Kolitari et al., 2013 Pano 2015
Nitrites Low High Low
Nitrates Low - 0
Phosphates High High -

Sulfides and hydrogen sulfide

Miho et al. (2013) reported that sulfides and hydrogen sulfide (H=S) are
consistently present in Lake Butrinti waters below 7 m depth. In some
cases, particularly during hot summers, sulfides are also detected in surface
waters, causing crises among sedentary biota, especially mussels. Sulfate
concentrations were relatively high, reaching up to 2.86 mg/L, with a
vertical distribution similar to that of salinity, and the lowest
concentrations were observed in the surface layers (up to 2.01 mg/L). The
presence of H-S is attributed to sulfur-reducing bacteria that can reduce
acidic sulfur salts under anaerobic conditions. Its concentration increases
with depth, reaching values exceeding 5.0 mg/L at the lake bottom (Miho,
1994; Dedej and Bino, 2003; Pano, 2015; Velaj, 2015).

Heavy metals

Few studies have addressed the presence of heavy metals in the waters
and sediments of Lake Butrinti (Topi et al. 2012; 2013a,b). Lead (Pb)
concentrations were higher in both the hypolimnion and epilimnion during
winter, while cadmium (Cd) is detected at both the surface and depth
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during autumn. Chromium (Cr) predominantly occurred at depth, with
peak values observed in the summer. Copper (Cu) is present throughout
the water column, with higher concentrations in the summer. Mercury (Hg)
has also been detected. Overall, the annual heavy metal concentrations
generally fell within the normal range, with the notable exception of
mercury. The average Hg concentration across all seasons (0.79 pg/L)
exceeded the EU guideline of 0.05 pg/L (Bushati, 2013; Table 8). More
recent studies (Omeri et al. 2024) have reported that Cd, Cr, and Pb levels
during 2023-2024 also surpassed the EU reference values.

Table 8. Heavy metal concentrations in Lake Butrinti waters compared
to EU standards (ug L") (Topi et al. 2012; 2013a,b; Omeri et al. 2024)

Reference Cd Cr Cu Pb Hg
Topi et al. 2013 0.078 1.41 8.26 15 0.79
Topi et al. 2012 0.075 11.06 20.15 1.78 0.23

Omeri et al. 2024 1.4 41 18 29 0.001
EU Standard 1 20 50 7.2 0.05

Pesticides

Nuro and Marku (2011) reported the presence of pesticides in the waters
of Butrinti, including DDT, Lindane, HCB, Aldrins, and Heptachlors. The
concentration of organochlorine pesticides ranged from 7.3 to 30.7 ng/L,
whereas the general EU limit for pesticide residues (EQS 2013/39/EU) is
approximately 0.01 ng/L (0.00001 pg/L). These values indicate that
pesticide levels in Butrinti waters substantially exceed the EU standards.
This finding provides further evidence of the adverse impact of agricultural
and urban activities in the surrounding areas. Given that such activities
have intensified in recent years; it is reasonable to suspect that the
associated environmental impact may now be even greater.

Investigation of the toxicity of waters at Butrinti Lake using bio-
reporting bacteria

Physicochemical analyses of waters and sediments of Butrinti Lake
confirmed the presence of contaminants that may affect the organisms
inhabiting the ecosystem (Fig. 1a) and the adjacent marine protected area.
While the measurement of individual chemical parameters provides
valuable insight into water quality, assessing cytotoxicity using
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luminescent bio-reporting bacteria allows for the simultaneous evaluation
of the combined effects of all pollutants. This was achieved by monitoring
the changes luminescence emitted by the bacteria (Fig. 1b). Biosensors
based on luminescent bacteria are highly sensitive to toxic substances and
are valuable tools for monitoring water safety and chemical quality (Bond
and Martin, 2005; Woutersen et al. 2010).
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Fig. 1: (&) HM distribution in the epi/hypolimnion and sediments of Butrinti Lake
based on previously reported data. (b) Use of bioluminescent bio-reporting bacteria
for the detection of cytotoxicity. Figures were prepared using the Canva software.

Water samples from 12 stations in Butrinti Lake were analysed for
cytotoxicity (Omeri et al. 2024) using luminescent Vibrio fischeri
according to 1SO 11348-3:2007. The results revealed the impact of various
categories of pollutants, including pesticides, heavy metals, urban waste,
and aquaculture by-products, together with the hydrological characteristics
of the lake, on bacterial toxicity (Fig. 2). Data on heavy metal
concentrations in sediments (Bacu et al. 2024; Fig. 2d) and water (Table
8) were used to interpret the cytotoxicity levels at the corresponding
stations (Fig. 2a—d). The findings indicate that the hydrological regime
plays a significant role in determining water cytotoxicity. Although Cd,
Cr, and Pb concentrations in water indicated a “Moderately Polluted”
status (according to EU standards; Table 8), and Cr and Ni in sediments
range from “Moderately Polluted” (Stations 6-10) to “Heavily Polluted”
(Stations 4, 6-11) (according to USEPA, 1991 Guidelines), the
Cytotoxicity Induction Factor (IF) was significantly high only at Station 2.
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This location corresponds to the Vivari Canal, an area characterized by
high fluctuations in inflow and outflow between Butrinti Lake and the
lonian Sea. Moreover, stations situated near agricultural areas exhibited IF
values ranging from 1.5 to 2, highlighting the role of agricultural pollutants
in the degradation of water quality.

Phytoplankton data

Butrinti Lake is considered one of the most important transitional
ecosystems along the Albanian coast, offering substantial ecological and
economic benefits, as well as high biodiversity and productivity. The
lagoon is extensively used for aquaculture, particularly for farming mussel
(Mytilus galloprovincialis). Phytoplankton, primarily diatom species,
account for the highest primary production in surface water layers (Miho
and Witkowski, 2005; Bushati, 2013; Miho et al. 2013). Experts recognize
phytoplankton as a reliable bioindicator of trophic status (Bushati, 2013;
Kolitari et al.2013).

The Trophic State Index (TSI) categorizes water bodies based on their
biological productivity. Data from various studies (Miho et al. 2013;
Bushati, 2013; Cako et al. 2013; Kolitari et al. 2013; Bacu et al. 2022;
Bacu and Zaho, 2022; Topi et al. 2013c; Omeri et al. 2024) indicate a shift
in the surface waters of Butrinti Lake from oligotrophic toward

mesotrophic conditions.
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Fig. 2: (a) Factors affecting the cytotoxicity of water in the Butrinti aquatic
ecosystem. (b) Trophic state of 12 stations in shallow waters at Lake Butrinti (acc to
Omeri et al. 2024); (c) Induction Factor of cytotoxicity in waters (acc to Bacu et al.

2024); (d) Heavy metals content in sediment samples at Lake Butrinti (Bacu et al.
2024).

Algal blooms

Previous studies have indicated that Lake Butrinti provides favourable
conditions for the growth of algal blooms. Consequently, dystrophic crises,
including monospecific blooms, may occur and pose significant ecological
risks (Miho, 1994; Bacu and Zaho, 2022). The majority of phytoplankton
species belong to the Bacillariophyceae (diatoms) and Dinophyceae
(dinoflagellates) (Table 9).
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Fig. 3: Phytoplankton diversity in Lake Butrinti up to the genus level. The figure
was prepared using previous data from Proti¢ (1907), Miho (1994); Dedej (2005),
and Bushati 2013.
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Table 9. Algal blooms recorded in Butrinti Lake over the years.

Month Year Species

April 1987 Pseudo-nitzschia spp.

May 1987 Prorocentrus micans

March 1990 Chaetoceros spp., Bacertiastrum spp., Cyclotella

caspia, etc.

March 1991 Chaetoceros spp. (C. wighamii)
January 2006 Pseudo-nitzschia delicatissima and P. seriata
October 2006 Pseudo-nitzschia delicatissima and P. seriata

Diversity of microalgae

Studies conducted between 1987 and 1991 reported 90 species of
microalgae, of which 60 were diatoms (Miho, 1994; Xhulaj et al. 2008),
followed by dinoflagellates (Miho, 1994). These species were classified
into five classes: Bacillariophyceae, Dinophyceae, Chrysophyceae,
Euglenophyceae, and Cyanophyceae, with diatoms occupying a dominant
position (Miho, 1994; Peja et al. 1996; Xhulaj et al. 2008). Between 2006
and 2010, Bushati (2013) recorded approximately 460 taxa of microscopic
algae across 13 classes, with diatoms and dinoflagellates being the
predominant groups. Over 20 taxa have been identified as toxic, including
five diatom species and 15 dinoflagellates (Miho et al. 2013). Bacu et al.
(2022) reported the presence of unicellular cyanobacteria, such as
Prochlorococcus and Synechococcus, emphasizing that favourable natural
and anthropogenic conditions may promote their blooms, potentially
posing ecological risks. Figure 3 presents a dendrogram of the
phytoplankton identified to date in Lake Butrinti, classified at the genus
level.

Methods used to determine phytoplankton diversity

Several analytical techniques have been employed to investigate
phytoplankton diversity in Lake Butrinti, including optical, electron, and
fluorescence microscopy, specific PCR assays, flow cytometry,
chemotaxonomy, and catalyzed reporter deposition—fluorescence in situ
hybridization (CARD-FISH) (Fig. 5).
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Fig. 4: Techniques used to investigate phytoplankton diversity in Lake Butrinti.

Microscopy

Most phytoplankton taxonomy results for Lake Butrinti have been
obtained using optical microscopy (Miho, 1994; Dedej, 2005; Bushati,
2013), with electron microscopy applied only in a few cases (Miho and
Witkowski, 2005). These methods rely on the observation of
morphological characteristics of phytoplankton samples, often enhanced
by staining with dyes such as Lugol’s solution and Methylene Blue.

DNA based methods (CARD-FISH, specific PCR, Genome Sequencing)

CARD-FISH (catalyzed reporter deposition—fluorescence in situ
hybridization) was used to detect ribosomal RNA (rRNA), messenger
RNA (mRNA), and functional genes encoded on the chromosome (Fig.
5a). This advanced FISH method is widely applied for the identification of
phytoplankton and other environmental microorganisms. This technique
involves designing a specific oligonucleotide probe targeting the gene or
RNA of interest, which is labelled with horseradish peroxidase (HRP)
enzyme. In the presence of tyramide, the signal is amplified via
fluorescence, enabling the sensitive detection of the target. CARD-FISH
allows for the prediction of the relative abundance of individual microbial
lineages based on their rRNA gene phylogeny. It can also be combined
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with direct enumeration methods, such as microscopy and flow cytometry,
to estimate the absolute abundance of microscopic lineages in
environmental samples (Piwosz et al. 2021).

Hybridized probes are typically visualized using epifluorescence
microscopy, although flow cytometry is occasionally used. Although the
main steps of the CARD-FISH protocol are generally consistent across
studies, minor modifications may be applied, such as additional staining
with DAPI (Fazi et al. 2007).
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Fig. 5: (a) CARD-FISH (protocol in brief) used to investigate phytoplankton
taxonomy at the class level. (b) PCR (protocol in brief) was used to determine
phytoplankton genetic diversity up to the genotype/subspecies level.

Recently, CARD-FISH has been applied to assess phytoplankton
biomass in Lake Butrinti (Bacu et al. 2024; Omeri et al. 2024). For the
hybridization of the filter sections, different HRP-labelled oligonucleotide
probes were used to target Bacteria (probes EUB338 I-I11) and Archaea
(probe ARCH915). The results indicated that 39.4% of the detected species
belonged to Proteobacteria, 30% to Bacteroidetes, and 10% to
Cyanobacteria. In the sediment samples, the proportion of Cyanobacteria
fell below 1%.
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Specific Polymerase Chain Reaction

PCR is one of the most commonly used molecular techniques for
taxonomic analyses. It exponentially amplifies specific DNA sequences
through a three-step procedure that is repeated over numerous cycles (Fig.
4b). The most frequently used genetic markers for phytoplankton
taxonomy are 16S rRNA and 18S rRNA, which are universally present in
bacteria, often in multiple copies or operons. The conserved function of
the 16S rRNA gene over time enables more accurate phylogenetic and
evolutionary analyses, and its length (~1,500 bp) is suitable for such
computational analyses. The 18S rRNA gene is primarily used for
phylogenetic analysis and biodiversity assessment, particularly in closely
related centric diatoms (Armbrust and Galindo, 2001). The internal
transcribed spacer (ITS) region is valuable for molecular systematics and
population genetics; however, the presence of multiple non-identical
rRNA operons can complicate comparative studies and restriction enzyme
analyses (Boyer et al. 2001). Investigations of 16S5-23S rDNA ITS
diversity in Lake Butrinti (Bacu et al. 2022, 2024; Omeri et al. 2024) have
revealed variations in ITS regions attributable to water pollutants. For
pico-cyanobacteria, multiple ITS products were detected: ITS-a showed
three sizes (1000, 900, and 300 bp), while ITS-b exhibited two sizes (550
and 350 bp).

Phytoplankton Genome Sequencing

Genome sequencing can identify subspecies and can be applied to
whole genomes or specific genomic fragments (Tang et al. 2019).
Commonly used markers include 16S rRNA (Honda et al. 1999; Sanchez-
Baracaldo, 2015), 18S rRNA (Wang et al. 2014), and rbcL (Salmaso et al.
2022). In Lake Butrinti, DNA sequencing has been used to investigate
polygenic relationships among species groups (Bacu et al. 2025,
unpublished data) through meta-rDNA amplicon sequencing of the
hypervariable V4 region of 16S rRNA, followed by taxonomic analysis.

Pigment- based method (Chemotaxonomy) for phytoplankton diversity
evaluation

Chemotaxonomy uses phytoplankton pigments to investigate
taxonomy, often at the class level, via CHEMTAX software (Fig. 6).
Pigments are extracted from filtered water samples and serve as markers
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for broad taxonomic groups (Latasa, 2007; Develi et al. 2012; Matek et al.
2023; Peltomaa et al. 2023). A simplified CHEMTAX approach applied to
Lake Butrinti samples revealed changes in phytoplankton community
composition associated with climate change (Bacu et al. 2024).

Table 10. An example of chemotaxonomy based evaluation of the main
taxa at Butrinti Lake considering the simplified CHEMTAX approach

Stations klb/kla klc/kla Taxonomy

B1-0 0.030481377 0.083801827 Haptophyceae,
Bacillariophyceae,
Chrysophyceae,
Proclorophyceae
B1-8 3.932308084 0.00687638 Proclorophyceae,

Prasinophyces
B2-0 0.855646268 0.711292537 Chrysophyceae,
Haptophyceae,
Proclorophyceae,
Prasinophyceae
B2-22 1.791247622 0.271359971 Dinoflagjelate,
Haptophyceae,
Chrysophyceae,
Diatoms,
Proclorophyceae,
Prasinophyces

B3-0 1.350116587 2.318815951 Prasinophyces

B3-19 0.359337349 0.428915663 Dinoflagjelate,
Prasinophyceae,
Chrysophyceae,

Proclorophyces,
Euglenophyceae,
Prasinophyceae

The method was applied to samples collected from stations B1-B3,
with sampling performed at both the surface and maximum depth: B1-0
(Station 1, depth 0 m), B1-8 (Station 1, depth 8 m), B2-0 (Station 2, depth
0 m), B2-22 (Station 2, depth 22 m), B3-0 (Station 3, depth 0 m), and B3-
19 (Station 3, depth 19 m), as reported by Bacu et al. (2024).

Each method described above has specific advantages and limitations
(Table 11), which should be considered in relation to the research
objectives, whether focusing on phytoplankton taxonomy, water quality
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and trophic state assessment, phytoplankton abundance, community
composition, genetic diversity, or the evaluation of pollutant effects on

cytotoxicity and subspecies-level genetic variation.

Table 11. Summary of main uses and limitations of methods for water
quality and phytoplankton diversity evaluation, applied at Lake Butrinti

Methods Purpose of use Limitations References
Physical-chemical Determine the Cannot be used to USEPA, 1991
parameters of waters quality of waters investigate
and sediments according to phytoplankton
accepted standards. | community
composition
Biomarkers Determine Trophic Cannot be used to USEPA, 1991
State/Quality of interpret the chemical
waters according to | composition of waters
accepted standards.
Biosensors (single-cell Evaluate the Higher sensitivity is Fdez-
fiber-optics, cytotoxicity required in complex Sanroman et
luminescent bacteria, imposed by wastewater al. 2025
etc) different pollutants environments, long-
in water and term stability, and
sediments. regulatory barriers
must be addressed.
Microscopy (optical, Identification to Time-consuming; Peltomaa et
electronic, fluorescence) | species level, The reliability of al. 2023
evaluation of identification depends
abundance. on the skills of the
identifier.
Morphologically
similar species cannot
be distinguished from
each other.
Flow cytometry Standard flow Dunker et al
Counting, analysis, | cytometry (FCM) is 2019
and identification of | restricted to a low
phytoplankton taxonomic resolution,
species and groups. | making it unsuitable
for identifying
indicator species.
Imaging flow
cytometers (IFC) can
overcome these
limitations.
Chemotaxonomy Monitoring Limitations due to Peltomaa et
phytoplankton overlapping profiles al. 2023
communities; of some biomarkers.
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Taxonomy at the
class level
identification;

CARD-FISH Estimates of relative | Imperfect probe Kubota,2013
abundance (percent | coverage and Piwosz et al.
contribution to total | specificity; 2021

eukaryotic numbers)
of individual
microbial lineages
defined by their
rRNA gene
phylogeny;

It can be separately
optimized for each
target group
(probe), which is
not possible for
PCR with primers
that target many
different templates.

poor detection of low
abundance or inactive
community members,
and difficulties in
counting aggregated
cells,
autofluorescence of
chloroplasts might
also interfere with
probe signals; and
tyramides sometimes
bind unspecifically.

Amplicon and shotgun

Sequencing & identification based | variation with many al. 2014
Metabarcoding on the similarity or | copies of individual
divergence of the genes causes
molecular sequence | overestimation of cell
of an unknown numbers and Gelis et al.
organismto a diversity; 2024

Species

vouchered reference
sequence in the
database.

Intragenomic

An annotated barcode
library and choice of
barcode and primers
are essential.

Alemzadeh. et

3. CONCLUSIONS

Lake Butrinti represents a dynamic aquatic ecosystem shaped by the
combined influences of freshwater inflow, saline intrusion from the lonian
Sea, and contributions from Lake Bufi. Over time, it has exhibited a trend
toward mesotrophic conditions, underscoring the need for continuous
monitoring of anthropogenic activities and climate change, the two
primary influencing factors of water quality. Strict regulation of fertilizer
and pesticide use in agriculture, proper treatment of urban wastewater,
controlled diversion of the Bistrica River during summer, and ongoing
maintenance of the Butrinti Canal (enlargement and deepening) are
essential to mitigate potential ecological and socio-economic impacts, such
as dystrophic crises, declines in fishing and mussel production, loss of
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biodiversity, degradation of ecological quality, and reduced environmental
aesthetic value. Furthermore, there is a clear need for more comprehensive
and systematic research employing both conventional and advanced
methods to monitor ecological changes, mitigate negative effects, and
safeguard the integrity and economic value of the lake. Emphasis should
be placed on the specific strengths of each analytical approach—
physicochemical, biological, DNA-based, and biosensor methods—and
their integration into a unified monitoring framework to ensure food safety.
Integrating these methodologies into the monitoring program of the
Albanian National Agency of Environment would strengthen long-term
ecological assessment and provide a robust evidence base to guide
environmental policy implementation in Albania.
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