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ABSTRACT 

Accurate traffic prediction is fundamental to effective urban mobility. This paper 

investigates the shift from mono-class to multi-class traffic modelling and its 

implications for physics-guided machine learning techniques. We examine two 

approaches for multi-class highway traffic prediction, encompassing both passenger 

vehicles and trucks: (i) a physics-regularized Gaussian Process (GP) model that 

integrates constraints from the multi-class METANET model, and (ii) a Long Short-

Term Memory (LSTM) network that incorporates these constraints into its loss 

function. Beyond evaluating prediction accuracy, computational cost, and 

implementation complexity, we highlight the challenges introduced by multi-class 

formulations—particularly the need to account for diverse vehicle dynamics. Our 

findings provide insights into the trade-offs and feasibility of each approach and assess 

the impact of transitioning from mono-class to multi-class models on predictive 

performance. 

 

Keywords: Gaussian Processes, machine learning, LSTM networks, multi-class 

METANET model, traffic modelling 

 

1. INTRODUCTION 

Accurate evaluation and prediction of traffic conditions are essential 

for improving traffic flow management, reducing congestion, and 

enhancing safety in Intelligent Transportation Systems (ITS). Traditional 
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physics-based models, such as the METANET model (Papageorgiou et al., 

1989), offer interpretable representations of macroscopic traffic dynamics. 

However, they often require extensive calibration and struggle to capture 

the stochastic nature of real-world traffic. Conversely, machine learning 

models have demonstrated strong predictive capabilities by leveraging 

large datasets, yet they may lack physical consistency and 

generalizability—especially in scenarios with limited data. To address 

these challenges, we propose two physics-guided machine learning models 

that integrate the strengths of data-driven approaches with domain 

knowledge derived from the widely adopted multi-class METANET 

framework. 

The multi-class METANET model (Pasquale et al. 2015), an 

extension of the original METANET framework, incorporates distinct 

dynamics and interaction terms for different vehicle classes, enabling a 

more accurate representation of mixed traffic flow. This enhances the 

realism and precision of traffic state modeling, particularly in scenarios 

involving heterogeneous traffic composed of both passenger vehicles and 

trucks. 

In this paper, we build upon our previous work on mono-class traffic 

prediction (Binjaku et al. 2024) by extending it to a multi-class context that 

explicitly accounts for vehicle heterogeneity. In our earlier study, we 

compared physics-regularized Gaussian Processes and physics-informed 

LSTM networks within a mono-class traffic setting. However, since real-

world traffic comprises multiple vehicle types exhibiting diverse 

behaviours, mono-class models may fall short in accurately capturing these 

complex dynamics. 

This study addresses two key research questions: 

 What are the benefits of extending physics-guided machine

learning models from a mono-class to a multi-class traffic setting

that explicitly captures vehicle heterogeneity?

 How does the performance of a physics-informed Long Short-

Term Memory (LSTM) model compare to that of a physics-

regularized Gaussian Process (GP) when both are applied to multi-

class traffic prediction?

To answer these questions, we propose and evaluate two multi-class 

physics-guided models based on the METANET framework:  

1. A multi-class physics-regularized Gaussian Process, in which the

equations from the multi-class METANET model are incorporated as
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a regularization term to guide the GP in learning traffic dynamics, 

while guaranteeing adherence to basic traffic flow relationships. 

2. A multi-class physics-informed Long Short-Term Memory network, 

which enhances the ability of an LSTM neural network to model 

temporal dependencies by directly embedding traffic flow physics 

into its architecture, thereby preserving physically meaningful 

constraints.  

Both models explicitly consider two vehicle classes—cars and 

trucks—allowing for a more accurate presentation of mixed traffic flow, 

both of which are critical indicators for evaluating and managing traffic 

conditions. are explicitly taken into account in both models, enabling a 

more accurate depiction of mixed traffic flow dynamics. The primary 

traffic variables predicted are mean speed and traffic flow, both of which 

are critical indicators for evaluating and managing traffic conditions. 

To rigorously evaluate the performance of the proposed models, we 

compare them across three key dimensions: i) accuracy of predictions, ii) 

training time, and iii) complexity of implementation. 

We perform and a comparative analysis of the physics-informed 

LSTM and the physics-regularized Gaussian Process models in both 

mono- and multi-class settings. The inclusion of results from our prior 

mono-class framework enables a comprehensive and consistent 

evaluation, allowing us to assess the advantages of incorporating multiple 

vehicle classes in modelling process.  

The reminder of the paper is structured as follows: Section 2 provides 

an overview of related work on the METANET model, Gaussian 

Processes, LSTMs, and physics-guided machine learning models for 

traffic analysis. Section 3 introduces the proposed multi-class physics-

based machine learning models and summarizes all models employed in 

this study. Section 4 details the experimental setup using real-world traffic 

data. Finally, Section 5 presents the conclusions and outlines directions for 

future research.5. 

 

2. RELATED WORK 

The literature on traffic modelling broadly categorizes existing 

approaches into three groups: data-driven models, physics-based models, 

and hybrid approaches that integrate domain knowledge into machine 

learning frameworks. Traditional physics-based models—such as 

microscopic and macroscopic traffic models—have been widely adopted 
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over the years. Macroscopic models offer a higher-level representation of 

traffic flow dynamics and include first-order models like the Lighthill-

Whitham-Richards (LWR) model, as well as second-order models such as 

Payne-Whitham (PW) and Aw-Rascle-Zhang (ARZ). Among these, the 

METANET model has gained particular prominence due to its discrete-

time, discrete-space formulation, which enables efficient traffic state 

estimation and supports practical control applications. Numerous 

extensions of the METANET framework have been proposed to handle 

heterogeneous vehicle classes (Pasquale et al. 2014; 2015), autonomous 

and connected vehicles (Shahri et al. 2022), and freeway control systems 

incorporating features such as ramp metering and variable speed limits 

(Hegyi et al. 2005; Chavoshi et al. 2023). These enhancements have 

improved the model's flexibility and applicability in addressing the 

demands of modern traffic management. 

With the increasing availability of traffic data, data-driven models 

have become powerful tools for estimating and forecasting traffic 

conditions. Among these, Gaussian Process (GP) models have been widely 

adopted due to their probabilistic nature and inherent ability to quantify 

uncertainty. Applications of GP models span a range of tasks, including 

scalable predictions via infinite mixture models (Sun and Xu, 2011) and 

queue length forecasting (Kocijan and Přikryl, 2010). Their predictive 

performance has been further improved through hybrid approaches such as 

GP ensembles (Zhan et al. 2018) and GP-LSTM combinations (Xie et al. 

2021). On the other hand, Long Short-Term Memory (LSTM) networks 

are particularly well-suited for capturing temporal dependencies in traffic 

data. They have demonstrated strong performance in various applications, 

including multi-step traffic forecasting (Liyong and Vateekul, 2019), 

imputation of missing data (Tian et al. 2018), and graph-based modelling 

for road link optimization (Liu et al. 2020). Moreover, the integration of 

Convolutional Neural Networks (CNNs) with LSTMs has enhanced the 

ability to detect spatiotemporal patterns in traffic networks (Chu et al. 

2021; Lian and Wang 2024). 

While physics-based models often struggle to adapt in real time, 

traditional data-driven models tend to overfit when faced with sparse or 

noisy data. Physics-guided machine learning (PGML) addresses these 

limitations by integrating physical laws into data-driven models, thereby 

enhancing the accuracy and robustness of real-time traffic management 

systems. PGML enables models to learn from data while remaining 

consistent with the underlying physical principles or domain knowledge of 
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the system being modelled. In recent years, interest in physics-guided 

machine learning has grown significantly. This increasing trend is 

illustrated in Figure 1, which is based on the body of literature identified 

during our review. 

 

 
Fig.1: Distribution of publications about physics-based machine learning models for 

traffic state estimation. 

 

Physics-guided machine learning (PGML) techniques have been 

applied to a wide range of tasks, from fuel consumption modelling and car-

following behaviour to trajectory prediction. For instance, to reduce 

vehicle emissions, (Das and Tanvir 2024) integrates Vehicle-Specific 

Power into a physics-informed LSTM model for autonomous vehicles 

(AVs). To enhance trajectory prediction, several studies—such as (Long 

et al. 2024; Sheng et al. 2024), and (Geng et al. 2023) —incorporate traffic 

models like the Intelligent Driver Model (IDM) and vehicle kinematics 

into deep learning frameworks. In efforts to simulate driver behaviour, 

hybrid approaches also merge classical physics with machine learning 

techniques. Liu et al. (2023) employ quantile regression within a physics-

informed deep learning (PIDL) framework to capture stochastic driving 

dynamics, while Mo et al. (2021) propose variations of PIDL-CF based on 

four distinct car-following models. Lei et al. (2024) utilize NSGA-II multi-

objective optimization in conjunction with physical models to address both 

fuel consumption and battery degradation in plug-in hybrid electric 

vehicles (PHEVs). 
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Traffic State Estimation (TSE) has been the focus of several studies 

(Huang and Agarwal, 2020; 2022; 2023a,b; Huang et al. 2024). To address 

challenges such as sparse sensor coverage, noisy data, and complex 

boundary conditions, these studies iteratively refine their physics-informed 

deep learning (PIDL) models by incorporating traffic flow models such as 

the Lighthill-Whitham-Richards (LWR) model, the Cell Transmission 

Model (CTM), conservation laws, and nonlocal variants of the LWR 

model. In their later work, fog computing is introduced to improve the real-

world applicability and scalability of the models.  

Meanwhile, physics-informed neural networks have also been 

researched by other academics. Aw-Rascle-Zhang (ARZ) is a second-order 

traffic flow model that was incorporated into the PIDL architecture (Shi, 

2021). Shi et al. (2022) enhance the model estimation performance under 

sparse data conditions by extending the PIDL framework with a 

Fundamental Diagram Learner (FDL). To more flexibly capture traffic 

dynamics, Di et al. (2023) propose a hybrid graph architecture that 

integrates both physics-informed and physics-uninformed components. 

Other notable approaches include the LWR-based PIDL framework 

proposed by Rempe et al. (2021), which integrates multiple sources of 

traffic data, and the domain-decomposition-based Physics-Informed 

Neural Network (PINN) developed by Usama et al. (2022). Barreau et al. 

(2021a,b) utilize coupled micro–macro PINN models to jointly identify, 

reconstruct, and predict traffic states using sparse data collected from 

probe vehicles. Recent advancements include multi-task optimization 

techniques Wang et al. (2023), where auxiliary tasks are used to guide 

PINNs via the LWR model, and the work of Zhao and Yu (2022), who 

apply second-order partial differential equation (PDE) models to estimate 

traffic states both spatially and temporally. 

Recurrent neural networks, particularly Long Short-Term Memory 

(LSTM) models, are frequently used in traffic state prediction due to their 

ability to capture temporal dependencies in traffic flow. The integration of 

physics-based traffic flow concepts has been shown to improve the 

accuracy and interpretability of LSTM models in several studies. For 

instance, Das and Tanvir (2024) present a physics-informed LSTM 

framework tailored for self-driving vehicles in mixed traffic conditions. 

The model employs a multi-objective loss function that incorporates 

Vehicle-Specific Power (VSP) to balance trajectory prediction with 

emission reduction. To enhance realistic car-following behaviour, 

Tischmann et al. (2024) combine LSTM with the Intelligent Driver Model 
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(IDM), using a physics-guided loss function to steer the training process. 

Fafoutellis and Vlahogianni (2025) employ Granger causality for feature 

selection and introduce a Traffic Flow Theory-Informed (TFTI) loss 

function to align LSTM predictions with fundamental traffic flow 

diagrams. In another study, Pereira et al. (2022) integrate the Traffic 

Reaction Model (TRM) into a physics-informed LSTM to ensure 

macroscopic consistency in traffic flow predictions. 

Physics-guided reinforcement learning (RL) is also emerging as a 

promising approach in traffic management. Han et al. (2022) introduce a 

physics-informed RL ramp metering method that enhances prediction 

accuracy by integrating synthetic and real-world data, grounded in 

polynomial traffic flow models.   

To achieve both flexibility and physical consistency, Sheng et al. 

(2024) propose a residual RL framework that embeds domain expertise via 

the Intelligent Driver Model (IDM) to model core traffic dynamics, while 

employing neural networks to learn residual patterns beyond those 

captured by traditional physics. 

 

3. OUR PROPOSED PHYSICS-BASED MACHINE 

LEARNING MODELS 

This section introduces the physics-based machine learning models 

proposed and developed in this study: the multi-class physics-regularized 

Gaussian Process (PR-GP) and the multi-class physics-informed Long 

Short-Term Memory (PI-LSTM) network. These models extend 

established approaches by integrating components from the Gaussian 

Process (GP) framework, the multi-class METANET traffic flow model, 

and Long Short-Term Memory (LSTM) networks, thereby combining 

data-driven learning with domain-specific traffic flow dynamics. 

3.1 The physics-regularized Gaussian process 

The multi-class physics-regularized Gaussian Process (PR-GP) model 

developed in this study is based on the integration of the multi-class 

METANET traffic flow model and Gaussian Processes (GPs). GPs are a 

powerful and flexible non-parametric framework used for regression and 

classification tasks, where relationships between data points are modelled 

probabilistically (Su and Zhang 2017). To ensure that the GP model 

remains consistent with fundamental traffic flow principles, a 

regularization term is incorporated into the objective function. This 
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regularization component is derived from the governing equations of the 

multi-class METANET model, initially introduced in (Pasquale et al., 

2015), which extends the original METANET framework (Papageorgiou 

et al., 1989) by incorporating the dynamics of multiple vehicle classes. 

Specifically, the regularization term is formulated based on the multi-class 

METANET equations for traffic density, mean speed, and traffic flow 

(Equations 1, 2, and 3 in Pasquale et al., (2015)), and is computed as 

follows: 

𝑔1,𝑐 = ρ𝑖,𝑐̂(𝑘 + 1) − ρ𝑖,𝑐̂(𝑘) −
𝑇

𝐿𝑖λ𝑖
[𝑞𝑖−1,𝑐̂(𝑘) − 𝑞𝑖,𝑐̂(𝑘) + 𝑟𝑖,𝑐̂(𝑘) − 𝑠𝑖,𝑐̂(𝑘)]       (1) 

𝑔2,𝑐 = 𝑣𝑖,𝑐(𝑘 + 1) −  𝑣𝑖,𝑐(𝑘) − 
𝑇

𝜏𝑐
[𝑉𝑖,𝑐(𝑘) −  𝑣𝑖,𝑐(𝑘)] − 

𝑇

𝐿𝑖
𝑣𝑖,𝑐(𝑘) (𝑣𝑖−1,𝑐(𝑘) − 𝑣𝑖,𝑐(𝑘)) + 

𝜈𝑐𝑇(𝜌𝑖−1(𝑘)−𝜌𝑖(𝑘))

𝜏𝑐𝐿𝑖 (𝜌𝑖(𝑘)+ 𝜒𝑐 )
− 𝛿𝑜𝑛𝑇

𝑣𝑖,𝑐(𝑘)𝑟𝑖(𝑘)

𝐿𝑖 [𝜌𝑖(𝑘)+ 𝜒𝑐]
              (2) 

𝑔3,𝑐 = 𝑞𝑖,𝑐̂(𝑘) − ρ𝑖,𝑐̂(𝑘) ⋅ λ𝑖 ⋅ 𝑣𝑖,𝑐̂(𝑘)  (3) 

where 𝜌̂, 𝜈̂, 𝑞̂ denote the estimated values of traffic  density, speed, and 

flow, respectively.   

Gaussian Processes are employed to estimate these quantities. To 

enhance the physical consistency of predictions, a set of pseudo-

observations (Z,ω) is introduced. These pseudo-observations (Z,ω) have 

the same structure as the original input-output pairs (X,Y), where X 

represents the input features and Y the observed outputs. The pseudo-

inputs Z are selected from the spatial-temporal domain to represent regions 

within data distribution. The corresponding pseudo- outputs ω are not 

directly, but are instead inferred from GP model and are used to evaluate 

adherence to physical constrains. The selection of pseudo-inputs Z is 

performed using a clustering-based approach, specifically the k-Means 

algorithm (Ikotun et al. 2023) to ensure good coverage of the spatial-

temporal data domain. 

Importantly, the pseudo-observations are selected to represent the 

input space in a realistic and data-representative manner. The locations Z 

are determined using a clustering-based technique, specifically the k-

Means algorithm (Ikotun et al. 2023). This approach ensures that the 

pseudo-observations effectively cover the spatiotemporal domain, 

reflecting the underlying structure of the dataset. As a result, the model is 

able to evaluate and enforce physical constraints across a diverse range of 

traffic conditions.  
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At the selected pseudo-observation points, the model evaluates the 

predicted values of traffic density, speed, and flow, which are then used to 

assess the degree to which the multi-class METANET equations are 

satisfied. This evaluation enables the computation of physics-based 

residuals corresponding to each governing equation. 

 These residuals are used to derive the terms g1,c, g2,c, and g3,c , which 

represent the deviations from the expected physical relationships for each 

vehicle class ccc. These terms are incorporated into the regularization 

strategy of the model. By embedding them into the Gaussian Process 

objective function, the model is guided to generate predictions that not only 

fit the observed data but also conform to the underlying physical traffic 

flow dynamics. This physics-based regularization, made possible through 

the use of pseudo-observations, enhances the model’s generalization 

capabilities—particularly in regions with sparse or noisy data—while 

ensuring that the learned relationships remain consistent with established 

traffic flow theory. 

Consistency with traffic flow dynamics is enforced through the 

inclusion of a physics-based regularization term, which enhances the 

Gaussian Process (GP) marginal likelihood. This augmented likelihood 

forms the basis of the final objective function. As a result, the model is 

trained not only to fit observed data but also to remain consistent with 

known physical laws governing traffic dynamics. 

The posterior distribution of the GP model, incorporating both 

observational data and physics-based constraints, can be expressed as: 

 

𝑝(𝑌, ω, 𝑔, 𝑓 , 𝑍| 𝑋 )  =  𝑝(𝑌|𝑋) 𝑝(ω, 𝑔, 𝑓 , 𝑍| 𝑋, 𝑌) ]                         (4) 

 
 

However, computing the log marginal likelihood log 𝑝(𝑌| 𝑋 ) directly 

is often intractable. To address this, the model is trained by maximizing 

the Evidence Lower Bound (ELBO), a variational approximation of the 

true marginal likelihood. We denote this objective function by L, and it 

integrates both the data likelihood and the regularization imposed by the 

physics-based constraints. This ELBO-based approach was first 

formalized in the context of sparse Gaussian Processes by Titsias (2009). 

Figure 2 shows the block diagram of the algorithmic workflow, that 

we have implemented to predict traffic flow and speed, for the multi-class 

physics-regularized Gaussian Process. The model input X is the position 

of the sensor and the time where the data are measured, while the output Y 
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are the real values for flow and speed. L is the objective function, and the 

execution ends when a predefined number of iterations has finished, set to 

500, or the value of the objective function does not change for more than 

10 iterations. We have implemented the algorithm in Tensorflow 

framework and to update the parameters, ADAM optimizer is used. 

Figure 2 presents the block diagram of the algorithmic workflow we 

have implemented for traffic flow and speed prediction using the multi-

class physics-regularized Gaussian Process model. The model input X 

consists of the sensor location and time stamp at which traffic 

measurements are recorded, while the output Y corresponds to the 

observed values for flow and speed. The training process optimizes the 

objective function L and terminates either when a predefined maximum 

number of 500 iterations is reached, or when the value of L has not changed 

for more than 10 consecutive iterations. The algorithm is implemented 

using the TensorFlow framework, and parameter updates are carried out 

using the ADAM optimizer. 

Fig. 2: Workflow of the multi-class physics-regularized Gaussian Process for traffic 

flow and speed prediction. 
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3.4.1 The physics-informed LSTM model 

The physics-informed LSTM model extends the concept of 

incorporating physical constraints into machine learning, specifically for 

sequential data. Long Short-Term Memory (LSTM) networks are an 

advanced class of Recurrent Neural Networks (RNNs) designed to capture 

long-range dependencies in time-series data (Hochreiter and Schmidhuber, 

1997). Unlike standard RNNs, which struggle with long-term memory due 

to vanishing gradients, LSTMs introduce memory cells and gating 

mechanisms that regulate the flow of information, enabling them to retain 

relevant context over extended sequences. 

In contrast to the physics-regularized Gaussian Process, which 

enforces physical consistency through an external regularization term, the 

physics-informed LSTM model directly embeds the multi-class 

METANET equations into the network’s temporal architecture. This 

makes it particularly well-suited for traffic flow modelling, where time-

dependent dynamics play a critical role. 

The model balances data-driven learning and physical consistency by 

incorporating a physics-based loss term into its training objective. The 

overall loss function consists of two components: (1) the standard mean 

squared error (MSE) between the LSTM predictions and observed traffic 

data, and (2) an additional term that penalizes discrepancies between the 

LSTM outputs and the physics-based estimates derived from the multi-

class METANET model: 
 

ℒ = α ⋅ MSE(𝑦, 𝑦̂) + (1 − α) ⋅ MSE(𝑦̂, 𝑦 ′̂)                                   (5) 
 

where α∈ [0, 1] balances physical laws with data-driven learning. While 

the parameters of the multi-class METANET model are pre-calibrated 

using real traffic data, the parameters of the LSTM network are optimized 

during training using gradient-based methods, specifically Stochastic 

Gradient Descent (SGD) and the Adam optimizer. Figure 3 illustrates the 

block diagram of the algorithmic workflow implemented to predict traffic 

flow and speed using the multi-class physics-informed LSTM model. The 

input to the model is a time series of past values for a single traffic state 

variable (either speed or flow) across consecutive time steps. Training 

proceeds for a maximum of 500 iterations, or until the objective function 

L shows no significant improvement for more than 10 consecutive 

iterations. The entire algorithm is implemented in the TensorFlow 

framework. 
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Fig. 3. Workflow of the multi-class physics-informed LSTM model for traffic flow 

and speed prediction. 

 
 

4. CASE STUDY APPLICATION 

We evaluated the proposed physics-guided models using data from 

the Caltrans Performance Measurement System (PeMS). The selected 

freeway segment and the corresponding sensor locations are depicted in 

Figure 4. In the figure, green labels indicate mainline sensors used for 

training the models, blue and purple labels represent sensors that provide 

on-ramp and off-ramp flow measurements, and the red label marks the 

location where predictions are performed. Traffic data were collected at 5-

minute intervals over a 5-day period from each sensor. This data collection 

strategy is based on findings from a prior study (Binjaku et al. 2025) in 

which we analysed the effect of training data size on the performance of a 
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multi-class physics-regularized Gaussian Process for traffic state 

prediction. That study showed that using two weeks of training data 

yielded the highest prediction accuracy, but at the cost of significantly 

increased computational time. In contrast, using 5 days of data provided 

an optimal trade-off between prediction accuracy and computational 

efficiency, and was therefore adopted in the present study. 

 
 

Fig. 4: The considered freeway stretch. 

 

Figure 5 illustrates the traffic data distribution for both cars and trucks 

over a five-day period at sensor S2. As shown in the plots, vehicle volumes 

increase significantly during peak hours and decline sharply—almost to 

zero—during night time. The speed distribution along the corridor 

similarly indicates congestion during rush hours, characterized by reduced 

average speeds. This traffic pattern is observed consistently across the 

entire study segment, confirming the temporal regularity of congestion 

during peak demand periods. 

The Pearson correlation coefficient between the flow of vehicles and 

trucks is −0.06, and between their speeds is −0.09, indicating negligible 

linear correlation in both cases. These low correlation values suggest that 

vehicles and trucks exhibit distinct flow and speed patterns across the 

dataset. As a result, it is justifiable and appropriate to model the two 

vehicle classes separately, particularly in the context of multi-class traffic 

flow modelling. 
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Fig.5: Flow and speed distribution during 5 days, for cars (5a and 5b) and trucks (5c 

and 5d). 

The multi-class physics-regularized Gaussian Process (PR-GP) model 

was configured with two restarts and optimized using the L-BFGS-B 

optimizer. The multi-class physics-informed LSTM (PI-LSTM) model 

was implemented using three stacked LSTM layers, each comprising 50 

units, followed by a Dropout layer with a dropout rate of 0.2 to mitigate 

overfitting. The Adam optimizer was employed for gradient-based 

parameter updates. 

Both models were trained for 500 epochs, with a learning rate of 0.1 

and a batch size of 32. Model predictions were generated for sensor S4, 

focusing on peak traffic hours over a single day. 

The fixed parameters of the multi-class METANET model are listed 

in Table 1, while the remaining parameters were calibrated using the initial 

values provided in Table 2. 

Table 1. METANET parameters with fixed value. 
Parameters Values 

𝑇 1/12 h 

𝐿𝑖 1.2 mi 

λ𝑖 5 
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Table 2. METANET parameters initial values. 
Parameters Values 

𝑣𝑓𝑟𝑒𝑒 100 km/h 

𝜌cr 59.4 veh/mi 

𝜒 20.97 veh/mi 

𝜏 0.005 h 

𝛼 1.5 

𝜈 13.5 mi2/h 

 

Figures 6 and 7 present the predicted speed and flow for cars and trucks, 

respectively, using the multi-class physics-regularized Gaussian Process 

and the multi-class physics-informed LSTM models. 

The corresponding Mean Absolute Percentage Error (MAPE) values for 

speed and flow predictions are reported in Tables 3 and 4, respectively. 

Additionally, Table 5 summarizes the training time required by each 

model. Training time was recorded on a standard laptop equipped with 16 

GB of RAM, a 2.0 GHz quad-core CPU, and running the Windows 

operating system. 
 

 

Fig. 6: Flow and speed predictions for cars, with the mono-class physics-regularized 

Gaussian Process (6a and 6b) and with the multi-class physics-regularized Gaussian 

Process (6c and 6d). 
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Fig. 7: Flow and speed predictions for cars, with the mono-class physics-informed 

LSTM (7a and 7b) and with the multi-class physics-informed LSTM (7c and 7d). 

Fig. 8: Flow and speed predictions for trucks, with physics-regularized Gaussian Process 

(8a and 8b), and physics-informed LSTM model (8c and 8d). 
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Table 3. Mean Absolute Percentage Errors in flow and speed for cars, with 

physics-regularized Gaussian process and physics-informed LSTM models 

 
Table 4. Mean Absolute Percentage Errors in flow and speed for trucks, with 

physics-regularized Gaussian process and physics-informed LSTM models 

 Traffic flow Traffic speed 

Multi-class physics-regularized Gaussian 

Process 

0.29 0.19 

Multi-class physics-informed LSTM 0.19 0.16 

 
Table 5. Training time 

 Time [sec] 

Multi-class physics-regularized Gaussian Process 18.200 

Multi-class physics-informed LSTM 2109 

 

The plots, prediction error tables, and the training time table clearly 

indicate that our study evaluates two key aspects: (i) the impact of 

transitioning from a mono-class to a multi-class modelling approach, and 

(ii) the trade-offs between the two model types—multi-class physics-

informed LSTM and multi-class physics-regularized Gaussian Process. 

First, the advantages of incorporating traffic heterogeneity are evident 

when contrasting mono-class and multi-class scenarios. Prediction errors 

are consistently higher in the mono-class setting, where vehicle types are 

not differentiated. For instance, the multi-class version of the physics-

regularized Gaussian Process model reduces the MAPE to 0.21 for flow 

and 0.16 for speed, compared to 0.23 and 0.17, respectively, in the mono-

class version. A similar pattern is observed with the physics-informed 

LSTM model: the mono-class version yields MAPE values of 0.18 (flow) 

and 0.15 (speed), while the multi-class version improves performance to 

0.17 and 0.11, respectively. Although these reductions may seem modest 

in absolute terms, they are consistent and meaningful—especially in real-

time traffic control scenarios where predictive precision is critical. The 

multi-class models enhance the network's ability to capture traffic patterns 

 Traffic flow Traffic speed 

Mono-class physics-regularized Gaussian 

process 

0.23 0.17 

Mono-class physics-informed LSTM  0.18 0.15 

Multi-class physics-regularized Gaussian 

Process 

0.21 0.16 

Multi-class physics-informed LSTM 0.17 0.11 
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by enabling the modelling of each vehicle class (e.g., cars and trucks) with 

distinct dynamics. 

Second, the trade-off between training time and prediction accuracy 

has significant implications for model architecture and overall 

performance. The multi-class physics-informed LSTM model achieves the 

best predictive performance, particularly in the multi-class case, with error 

levels of 0.17 for flow and 0.11 for speed. This improvement stems from 

the LSTM’s inherent ability to effectively capture temporal dynamics and 

long-term dependencies in traffic data. 

In addition to its superior predictive accuracy for both flow and speed, 

the multi-class physics-informed LSTM model is also computationally 

efficient, requiring only 2,109 seconds for training. In contrast, the multi-

class physics-regularized Gaussian Process (PRGP) model demands 

significantly more computational resources, with a training time of 18,200 

seconds. 

This substantial difference in training time stems from the 

fundamental nature of the two models. The physics-informed LSTM (PI-

LSTM) relies on iterative, gradient-based optimization over multiple 

epochs, whereas the PRGP model depends on matrix-based computations. 

When physical knowledge is incorporated into the PRGP framework, the 

regularization scheme and the covariance structure must be adapted 

accordingly, increasing computational complexity. PRGP's kernel-based 

architecture becomes more cumbersome when integrating physical 

constraints. In contrast, PI-LSTM enables a more modular and flexible 

integration of physical knowledge through modifications to the loss 

function, enhancing its scalability and adaptability to diverse traffic 

dynamics. 

5. CONCLUSIONS

In this study, we implemented and evaluated two models for traffic 

state prediction: the physics-informed Long Short-Term Memory (PI-

LSTM) model and the physics-regularized Gaussian Process (PRGP) 

model, applied to both mono-class and multi-class traffic data. The models 

were tested using a real-world highway dataset for predicting vehicle flow 

and speed. 

The results indicate that multi-class models consistently outperform 

their mono-class counterparts by achieving higher prediction accuracy 

through the incorporation of vehicle-specific dynamics.  
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Among the evaluated approaches, the multi-class PI-LSTM model 

demonstrated superior predictive performance while also significantly 

reducing training time. Its architecture is comparatively simpler to 

implement, requiring only modest adjustments to the loss function to 

incorporate physical constraints. In contrast, although the PRGP model 

also benefits from physics-based regularization, its implementation is more 

complex due to the need for modifying kernel structures and managing 

computationally intensive matrix operations. This leads to higher 

computational costs, making it less suitable for real-time applications. 

Overall, the findings suggest that the multi-class physics-informed 

LSTM model offers the best trade-off between predictive accuracy, 

computational efficiency, and implementation complexity. It stands out as 

a practical and effective solution for real-time traffic prediction in 

heterogeneous traffic environments. 
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