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ABSTRACT

Accurate traffic prediction is fundamental to effective urban mobility. This paper
investigates the shift from mono-class to multi-class traffic modelling and its
implications for physics-guided machine learning techniques. We examine two
approaches for multi-class highway traffic prediction, encompassing both passenger
vehicles and trucks: (i) a physics-regularized Gaussian Process (GP) model that
integrates constraints from the multi-class METANET model, and (ii) a Long Short-
Term Memory (LSTM) network that incorporates these constraints into its loss
function. Beyond evaluating prediction accuracy, computational cost, and
implementation complexity, we highlight the challenges introduced by multi-class
formulations—particularly the need to account for diverse vehicle dynamics. Our
findings provide insights into the trade-offs and feasibility of each approach and assess
the impact of transitioning from mono-class to multi-class models on predictive
performance.

Keywords: Gaussian Processes, machine learning, LSTM networks, multi-class
METANET model, traffic modelling

1. INTRODUCTION

Accurate evaluation and prediction of traffic conditions are essential
for improving traffic flow management, reducing congestion, and
enhancing safety in Intelligent Transportation Systems (ITS). Traditional
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physics-based models, such as the METANET model (Papageorgiou et al.,
1989), offer interpretable representations of macroscopic traffic dynamics.
However, they often require extensive calibration and struggle to capture
the stochastic nature of real-world traffic. Conversely, machine learning
models have demonstrated strong predictive capabilities by leveraging
large datasets, yet they may lack physical consistency and
generalizability—especially in scenarios with limited data. To address
these challenges, we propose two physics-guided machine learning models
that integrate the strengths of data-driven approaches with domain
knowledge derived from the widely adopted multi-class METANET
framework.

The multi-class METANET model (Pasquale et al. 2015), an
extension of the original METANET framework, incorporates distinct
dynamics and interaction terms for different vehicle classes, enabling a
more accurate representation of mixed traffic flow. This enhances the
realism and precision of traffic state modeling, particularly in scenarios
involving heterogeneous traffic composed of both passenger vehicles and
trucks.

In this paper, we build upon our previous work on mono-class traffic
prediction (Binjaku et al. 2024) by extending it to a multi-class context that
explicitly accounts for vehicle heterogeneity. In our earlier study, we
compared physics-regularized Gaussian Processes and physics-informed
LSTM networks within a mono-class traffic setting. However, since real-
world traffic comprises multiple vehicle types exhibiting diverse
behaviours, mono-class models may fall short in accurately capturing these
complex dynamics.

This study addresses two key research questions:

e What are the benefits of extending physics-guided machine
learning models from a mono-class to a multi-class traffic setting
that explicitly captures vehicle heterogeneity?

e How does the performance of a physics-informed Long Short-
Term Memory (LSTM) model compare to that of a physics-
regularized Gaussian Process (GP) when both are applied to multi-
class traffic prediction?

To answer these questions, we propose and evaluate two multi-class

physics-guided models based on the METANET framework:
1. A multi-class physics-regularized Gaussian Process, in which the
equations from the multi-class METANET model are incorporated as
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a regularization term to guide the GP in learning traffic dynamics,

while guaranteeing adherence to basic traffic flow relationships.

2. A multi-class physics-informed Long Short-Term Memory network,
which enhances the ability of an LSTM neural network to model
temporal dependencies by directly embedding traffic flow physics
into its architecture, thereby preserving physically meaningful
constraints.

Both models explicitly consider two vehicle classes—cars and
trucks—allowing for a more accurate presentation of mixed traffic flow,
both of which are critical indicators for evaluating and managing traffic
conditions. are explicitly taken into account in both models, enabling a
more accurate depiction of mixed traffic flow dynamics. The primary
traffic variables predicted are mean speed and traffic flow, both of which
are critical indicators for evaluating and managing traffic conditions.

To rigorously evaluate the performance of the proposed models, we
compare them across three key dimensions: i) accuracy of predictions, ii)
training time, and iii) complexity of implementation.

We perform and a comparative analysis of the physics-informed
LSTM and the physics-regularized Gaussian Process models in both
mono- and multi-class settings. The inclusion of results from our prior
mono-class framework enables a comprehensive and consistent
evaluation, allowing us to assess the advantages of incorporating multiple
vehicle classes in modelling process.

The reminder of the paper is structured as follows: Section 2 provides
an overview of related work on the METANET model, Gaussian
Processes, LSTMs, and physics-guided machine learning models for
traffic analysis. Section 3 introduces the proposed multi-class physics-
based machine learning models and summarizes all models employed in
this study. Section 4 details the experimental setup using real-world traffic
data. Finally, Section 5 presents the conclusions and outlines directions for
future research.5.

2. RELATED WORK

The literature on traffic modelling broadly categorizes existing
approaches into three groups: data-driven models, physics-based models,
and hybrid approaches that integrate domain knowledge into machine
learning frameworks. Traditional physics-based models—such as
microscopic and macroscopic traffic models—have been widely adopted
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over the years. Macroscopic models offer a higher-level representation of
traffic flow dynamics and include first-order models like the Lighthill-
Whitham-Richards (LWR) model, as well as second-order models such as
Payne-Whitham (PW) and Aw-Rascle-Zhang (ARZ). Among these, the
METANET model has gained particular prominence due to its discrete-
time, discrete-space formulation, which enables efficient traffic state
estimation and supports practical control applications. Numerous
extensions of the METANET framework have been proposed to handle
heterogeneous vehicle classes (Pasquale et al. 2014; 2015), autonomous
and connected vehicles (Shahri et al. 2022), and freeway control systems
incorporating features such as ramp metering and variable speed limits
(Hegyi et al. 2005; Chavoshi et al. 2023). These enhancements have
improved the model's flexibility and applicability in addressing the
demands of modern traffic management.

With the increasing availability of traffic data, data-driven models
have become powerful tools for estimating and forecasting traffic
conditions. Among these, Gaussian Process (GP) models have been widely
adopted due to their probabilistic nature and inherent ability to quantify
uncertainty. Applications of GP models span a range of tasks, including
scalable predictions via infinite mixture models (Sun and Xu, 2011) and
queue length forecasting (Kocijan and Piikryl, 2010). Their predictive
performance has been further improved through hybrid approaches such as
GP ensembles (Zhan et al. 2018) and GP-LSTM combinations (Xie et al.
2021). On the other hand, Long Short-Term Memory (LSTM) networks
are particularly well-suited for capturing temporal dependencies in traffic
data. They have demonstrated strong performance in various applications,
including multi-step traffic forecasting (Liyong and Vateekul, 2019),
imputation of missing data (Tian et al. 2018), and graph-based modelling
for road link optimization (Liu et al. 2020). Moreover, the integration of
Convolutional Neural Networks (CNNs) with LSTMs has enhanced the
ability to detect spatiotemporal patterns in traffic networks (Chu et al.
2021; Lian and Wang 2024).

While physics-based models often struggle to adapt in real time,
traditional data-driven models tend to overfit when faced with sparse or
noisy data. Physics-guided machine learning (PGML) addresses these
limitations by integrating physical laws into data-driven models, thereby
enhancing the accuracy and robustness of real-time traffic management
systems. PGML enables models to learn from data while remaining
consistent with the underlying physical principles or domain knowledge of
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the system being modelled. In recent years, interest in physics-guided
machine learning has grown significantly. This increasing trend is
illustrated in Figure 1, which is based on the body of literature identified
during our review.

)

Number of Publications
w - w

N

-

[¢]

2020 2021 20‘22 2023 2024 2025
Year

Fig.1: Distribution of publications about physics-based machine learning models for
traffic state estimation.

Physics-guided machine learning (PGML) techniques have been
applied to a wide range of tasks, from fuel consumption modelling and car-
following behaviour to trajectory prediction. For instance, to reduce
vehicle emissions, (Das and Tanvir 2024) integrates Vehicle-Specific
Power into a physics-informed LSTM model for autonomous vehicles
(AVs). To enhance trajectory prediction, several studies—such as (Long
et al. 2024; Sheng et al. 2024), and (Geng et al. 2023) —incorporate traffic
models like the Intelligent Driver Model (IDM) and vehicle kinematics
into deep learning frameworks. In efforts to simulate driver behaviour,
hybrid approaches also merge classical physics with machine learning
techniques. Liu et al. (2023) employ quantile regression within a physics-
informed deep learning (PIDL) framework to capture stochastic driving
dynamics, while Mo et al. (2021) propose variations of PIDL-CF based on
four distinct car-following models. Lei et al. (2024) utilize NSGA-II multi-
objective optimization in conjunction with physical models to address both
fuel consumption and battery degradation in plug-in hybrid electric
vehicles (PHEVS).
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Traffic State Estimation (TSE) has been the focus of several studies
(Huang and Agarwal, 2020; 2022; 2023a,b; Huang et al. 2024). To address
challenges such as sparse sensor coverage, noisy data, and complex
boundary conditions, these studies iteratively refine their physics-informed
deep learning (PIDL) models by incorporating traffic flow models such as
the Lighthill-Whitham-Richards (LWR) model, the Cell Transmission
Model (CTM), conservation laws, and nonlocal variants of the LWR
model. In their later work, fog computing is introduced to improve the real-
world applicability and scalability of the models.

Meanwhile, physics-informed neural networks have also been
researched by other academics. Aw-Rascle-Zhang (ARZ) is a second-order
traffic flow model that was incorporated into the PIDL architecture (Shi,
2021). Shi et al. (2022) enhance the model estimation performance under
sparse data conditions by extending the PIDL framework with a
Fundamental Diagram Learner (FDL). To more flexibly capture traffic
dynamics, Di et al. (2023) propose a hybrid graph architecture that
integrates both physics-informed and physics-uninformed components.

Other notable approaches include the LWR-based PIDL framework
proposed by Rempe et al. (2021), which integrates multiple sources of
traffic data, and the domain-decomposition-based Physics-Informed
Neural Network (PINN) developed by Usama et al. (2022). Barreau et al.
(2021a,b) utilize coupled micro—macro PINN models to jointly identify,
reconstruct, and predict traffic states using sparse data collected from
probe vehicles. Recent advancements include multi-task optimization
techniques Wang et al. (2023), where auxiliary tasks are used to guide
PINNs via the LWR model, and the work of Zhao and Yu (2022), who
apply second-order partial differential equation (PDE) models to estimate
traffic states both spatially and temporally.

Recurrent neural networks, particularly Long Short-Term Memory
(LSTM) models, are frequently used in traffic state prediction due to their
ability to capture temporal dependencies in traffic flow. The integration of
physics-based traffic flow concepts has been shown to improve the
accuracy and interpretability of LSTM models in several studies. For
instance, Das and Tanvir (2024) present a physics-informed LSTM
framework tailored for self-driving vehicles in mixed traffic conditions.
The model employs a multi-objective loss function that incorporates
Vehicle-Specific Power (VSP) to balance trajectory prediction with
emission reduction. To enhance realistic car-following behaviour,
Tischmann et al. (2024) combine LSTM with the Intelligent Driver Model
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(IDM), using a physics-guided loss function to steer the training process.
Fafoutellis and Vlahogianni (2025) employ Granger causality for feature
selection and introduce a Traffic Flow Theory-Informed (TFTI) loss
function to align LSTM predictions with fundamental traffic flow
diagrams. In another study, Pereira et al. (2022) integrate the Traffic
Reaction Model (TRM) into a physics-informed LSTM to ensure
macroscopic consistency in traffic flow predictions.

Physics-guided reinforcement learning (RL) is also emerging as a
promising approach in traffic management. Han et al. (2022) introduce a
physics-informed RL ramp metering method that enhances prediction
accuracy by integrating synthetic and real-world data, grounded in
polynomial traffic flow models.

To achieve both flexibility and physical consistency, Sheng et al.
(2024) propose a residual RL framework that embeds domain expertise via
the Intelligent Driver Model (IDM) to model core traffic dynamics, while
employing neural networks to learn residual patterns beyond those
captured by traditional physics.

3. OUR PROPOSED PHYSICS-BASED MACHINE
LEARNING MODELS

This section introduces the physics-based machine learning models
proposed and developed in this study: the multi-class physics-regularized
Gaussian Process (PR-GP) and the multi-class physics-informed Long
Short-Term Memory (PI-LSTM) network. These models extend
established approaches by integrating components from the Gaussian
Process (GP) framework, the multi-class METANET traffic flow model,
and Long Short-Term Memory (LSTM) networks, thereby combining
data-driven learning with domain-specific traffic flow dynamics.

3.1The physics-regularized Gaussian process

The multi-class physics-regularized Gaussian Process (PR-GP) model
developed in this study is based on the integration of the multi-class
METANET traffic flow model and Gaussian Processes (GPs). GPs are a
powerful and flexible non-parametric framework used for regression and
classification tasks, where relationships between data points are modelled
probabilistically (Su and Zhang 2017). To ensure that the GP model
remains consistent with fundamental traffic flow principles, a
regularization term is incorporated into the objective function. This
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regularization component is derived from the governing equations of the
multi-class METANET model, initially introduced in (Pasquale et al.,
2015), which extends the original METANET framework (Papageorgiou
et al., 1989) by incorporating the dynamics of multiple vehicle classes.
Specifically, the regularization term is formulated based on the multi-class
METANET equations for traffic density, mean speed, and traffic flow
(Equations 1, 2, and 3 in Pasquale et al., (2015)), and is computed as
follows:

Gre = Pocle+ 1) = e () = - [me () = () + 7000 =5 (0] - (D)

G2 = Viclk + D) = v0(0) = [V () = v, (0)] = L) (Vi o () = vie()) +

VeT(pi-1 () —pi(k)) v, (k)ri (k)
TeLi (pi(K)+ xc) SonT Li [pi(k)+ xcl (2)
93.c = Gue (k) — FTI.\C(k) P 17;(1() (3

where p, v, q denote the estimated values of traffic density, speed, and
flow, respectively.

Gaussian Processes are employed to estimate these quantities. To
enhance the physical consistency of predictions, a set of pseudo-
observations (Z,o) is introduced. These pseudo-observations (Z,w) have
the same structure as the original input-output pairs (X,Y), where X
represents the input features and Y the observed outputs. The pseudo-
inputs Z are selected from the spatial-temporal domain to represent regions
within data distribution. The corresponding pseudo- outputs ® are not
directly, but are instead inferred from GP model and are used to evaluate
adherence to physical constrains. The selection of pseudo-inputs Z is
performed using a clustering-based approach, specifically the k-Means
algorithm (lkotun et al. 2023) to ensure good coverage of the spatial-
temporal data domain.

Importantly, the pseudo-observations are selected to represent the
input space in a realistic and data-representative manner. The locations Z
are determined using a clustering-based technique, specifically the k-
Means algorithm (lkotun et al. 2023). This approach ensures that the
pseudo-observations effectively cover the spatiotemporal domain,
reflecting the underlying structure of the dataset. As a result, the model is
able to evaluate and enforce physical constraints across a diverse range of
traffic conditions.
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At the selected pseudo-observation points, the model evaluates the
predicted values of traffic density, speed, and flow, which are then used to
assess the degree to which the multi-class METANET equations are
satisfied. This evaluation enables the computation of physics-based
residuals corresponding to each governing equation.

These residuals are used to derive the terms gi.c, g2.c, and gs.c , which
represent the deviations from the expected physical relationships for each
vehicle class ccc. These terms are incorporated into the regularization
strategy of the model. By embedding them into the Gaussian Process
objective function, the model is guided to generate predictions that not only
fit the observed data but also conform to the underlying physical traffic
flow dynamics. This physics-based regularization, made possible through
the use of pseudo-observations, enhances the model’s generalization
capabilities—particularly in regions with sparse or noisy data—while
ensuring that the learned relationships remain consistent with established
traffic flow theory.

Consistency with traffic flow dynamics is enforced through the
inclusion of a physics-based regularization term, which enhances the
Gaussian Process (GP) marginal likelihood. This augmented likelihood
forms the basis of the final objective function. As a result, the model is
trained not only to fit observed data but also to remain consistent with
known physical laws governing traffic dynamics.

The posterior distribution of the GP model, incorporating both
observational data and physics-based constraints, can be expressed as:

p(Y,0,9.f.Z|X) = p(Y|1X) p(w,9.f ,Z| X,¥) ] (4)

However, computing the log marginal likelihood log p(Y| X ) directly
is often intractable. To address this, the model is trained by maximizing
the Evidence Lower Bound (ELBO), a variational approximation of the
true marginal likelihood. We denote this objective function by L, and it
integrates both the data likelihood and the regularization imposed by the
physics-based constraints. This ELBO-based approach was first
formalized in the context of sparse Gaussian Processes by Titsias (2009).

Figure 2 shows the block diagram of the algorithmic workflow, that
we have implemented to predict traffic flow and speed, for the multi-class
physics-regularized Gaussian Process. The model input X is the position
of the sensor and the time where the data are measured, while the output Y
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are the real values for flow and speed. L is the objective function, and the
execution ends when a predefined number of iterations has finished, set to
500, or the value of the objective function does not change for more than
10 iterations. We have implemented the algorithm in Tensorflow
framework and to update the parameters, ADAM optimizer is used.

Figure 2 presents the block diagram of the algorithmic workflow we
have implemented for traffic flow and speed prediction using the multi-
class physics-regularized Gaussian Process model. The model input X
consists of the sensor location and time stamp at which traffic
measurements are recorded, while the output Y corresponds to the
observed values for flow and speed. The training process optimizes the
objective function L and terminates either when a predefined maximum
number of 500 iterations is reached, or when the value of L has not changed
for more than 10 consecutive iterations. The algorithm is implemented
using the TensorFlow framework, and parameter updates are carried out
using the ADAM optimizer.

X=minules,posilion
Y=flow/speed

Initialize model

paramelers ¥

Sample m pseudo
observations Z

[
v v

Estimate speed and Estimate speed and
flow for vehicles flow for trucks

l l

Compule g values for Compule g values for
vehicles trucks

L(slep+1)-L(step)!=0 or
step<=Nitarations

Output learned

parameters I |
Predict values for new
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! v

Compute gradients

Compute obj. function

Measure accuracy

Update the parameters

Fig. 2: Workflow of the multi-class physics-regularized Gaussian Process for traffic
flow and speed prediction.
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3.4.1 The physics-informed LSTM model

The physics-informed LSTM model extends the concept of
incorporating physical constraints into machine learning, specifically for
sequential data. Long Short-Term Memory (LSTM) networks are an
advanced class of Recurrent Neural Networks (RNNSs) designed to capture
long-range dependencies in time-series data (Hochreiter and Schmidhuber,
1997). Unlike standard RNNSs, which struggle with long-term memory due
to vanishing gradients, LSTMs introduce memory cells and gating
mechanisms that regulate the flow of information, enabling them to retain
relevant context over extended sequences.

In contrast to the physics-regularized Gaussian Process, which
enforces physical consistency through an external regularization term, the
physics-informed LSTM model directly embeds the multi-class
METANET equations into the network’s temporal architecture. This
makes it particularly well-suited for traffic flow modelling, where time-
dependent dynamics play a critical role.

The model balances data-driven learning and physical consistency by
incorporating a physics-based loss term into its training objective. The
overall loss function consists of two components: (1) the standard mean
squared error (MSE) between the LSTM predictions and observed traffic
data, and (2) an additional term that penalizes discrepancies between the
LSTM outputs and the physics-based estimates derived from the multi-
class METANET model:

L=a-MSE(y,9) + (1 -a) - MSE(9,y") (5)

where o€ [0, 1] balances physical laws with data-driven learning. While
the parameters of the multi-class METANET model are pre-calibrated
using real traffic data, the parameters of the LSTM network are optimized
during training using gradient-based methods, specifically Stochastic
Gradient Descent (SGD) and the Adam optimizer. Figure 3 illustrates the
block diagram of the algorithmic workflow implemented to predict traffic
flow and speed using the multi-class physics-informed LSTM model. The
input to the model is a time series of past values for a single traffic state
variable (either speed or flow) across consecutive time steps. Training
proceeds for a maximum of 500 iterations, or until the objective function
L shows no significant improvement for more than 10 consecutive
iterations. The entire algorithm is implemented in the TensorFlow
framework.
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Fig. 3. Workflow of the multi-class physics-informed LSTM model for traffic flow
and speed prediction.

4. CASE STUDY APPLICATION

We evaluated the proposed physics-guided models using data from
the Caltrans Performance Measurement System (PeMS). The selected
freeway segment and the corresponding sensor locations are depicted in
Figure 4. In the figure, green labels indicate mainline sensors used for
training the models, blue and purple labels represent sensors that provide
on-ramp and off-ramp flow measurements, and the red label marks the
location where predictions are performed. Traffic data were collected at 5-
minute intervals over a 5-day period from each sensor. This data collection
strategy is based on findings from a prior study (Binjaku et al. 2025) in
which we analysed the effect of training data size on the performance of a



AJINTS No 62 / 2025 (XXX) E

multi-class physics-regularized Gaussian Process for traffic state
prediction. That study showed that using two weeks of training data
yielded the highest prediction accuracy, but at the cost of significantly
increased computational time. In contrast, using 5 days of data provided
an optimal trade-off between prediction accuracy and computational
efficiency, and was therefore adopted in the present study.
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Fig. 4: The considered freeway stretch.

Figure 5 illustrates the traffic data distribution for both cars and trucks
over a five-day period at sensor S2. As shown in the plots, vehicle volumes
increase significantly during peak hours and decline sharply—almost to
zero—during night time. The speed distribution along the corridor
similarly indicates congestion during rush hours, characterized by reduced
average speeds. This traffic pattern is observed consistently across the
entire study segment, confirming the temporal regularity of congestion
during peak demand periods.

The Pearson correlation coefficient between the flow of vehicles and
trucks is —0.06, and between their speeds is —0.09, indicating negligible
linear correlation in both cases. These low correlation values suggest that
vehicles and trucks exhibit distinct flow and speed patterns across the
dataset. As a result, it is justifiable and appropriate to model the two
vehicle classes separately, particularly in the context of multi-class traffic
flow modelling.



AJINTS No 62 / 2025 (XXX)

=
=1
=3

(a) (b)

o

o

=1
~
o

»

=3

=3
a
S

Flow (veh/h)
w
=3
o
Speed (mi/h)
o
s

N

=3

=3
S
=3

-

o

=3
w
=)

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Elapsed time (5min) Elapsed time (5min)

w
&

(<)

(d),

w

=3
~
=]

~
o
o
o

oooN
=3
o
=]

»

Flow (veh/h)
Speed (mi/h)

-
o
a
S

]
w
S

o

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Elapsed time (Smin) Elapsed time (5min)

Fig.5: Flow and speed distribution during 5 days, for cars (5a and 5b) and trucks (5¢
and 5d).

The multi-class physics-regularized Gaussian Process (PR-GP) model
was configured with two restarts and optimized using the L-BFGS-B
optimizer. The multi-class physics-informed LSTM (PI-LSTM) model
was implemented using three stacked LSTM layers, each comprising 50
units, followed by a Dropout layer with a dropout rate of 0.2 to mitigate
overfitting. The Adam optimizer was employed for gradient-based
parameter updates.

Both models were trained for 500 epochs, with a learning rate of 0.1
and a batch size of 32. Model predictions were generated for sensor S4,
focusing on peak traffic hours over a single day.

The fixed parameters of the multi-class METANET model are listed
in Table 1, while the remaining parameters were calibrated using the initial
values provided in Table 2.

Table 1. METANET parameters with fixed value.

Parameters Values
T 1/12h
L; 1.2 mi
A 5
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Table 2. METANET parameters initial values.

Parameters Values
Vfree 100 km/h
P 59.4 veh/mi
X 20.97 veh/mi
T 0.005 h
a 15
v 13.5 mi?/n

Figures 6 and 7 present the predicted speed and flow for cars and trucks,
respectively, using the multi-class physics-regularized Gaussian Process
and the multi-class physics-informed LSTM models.

The corresponding Mean Absolute Percentage Error (MAPE) values for
speed and flow predictions are reported in Tables 3 and 4, respectively.
Additionally, Table 5 summarizes the training time required by each
model. Training time was recorded on a standard laptop equipped with 16

GB of RAM, a 2.0 GHz quad-core CPU, and running the Windows
operating system.
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Table 3. Mean Absolute Percentage Errors in flow and speed for cars, with
physics-regularized Gaussian process and physics-informed LSTM models

Traffic flow | Traffic speed
Mono-class  physics-regularized  Gaussian 0.23 0.17
process
Mono-class physics-informed LSTM 0.18 0.15
Multi-class  physics-regularized ~ Gaussian 0.21 0.16
Process
Multi-class physics-informed LSTM 0.17 0.11

Table 4. Mean Absolute Percentage Errors in flow and speed for trucks, with
physics-regularized Gaussian process and physics-informed LSTM models

Traffic flow | Traffic speed

Multi-class  physics-regularized ~ Gaussian 0.29 0.19
Process

Multi-class physics-informed LSTM 0.19 0.16

Table 5. Training time
Time [sec]

Multi-class physics-regularized Gaussian Process 18.200
Multi-class physics-informed LSTM 2109

The plots, prediction error tables, and the training time table clearly
indicate that our study evaluates two key aspects: (i) the impact of
transitioning from a mono-class to a multi-class modelling approach, and
(ii) the trade-offs between the two model types—multi-class physics-
informed LSTM and multi-class physics-regularized Gaussian Process.

First, the advantages of incorporating traffic heterogeneity are evident
when contrasting mono-class and multi-class scenarios. Prediction errors
are consistently higher in the mono-class setting, where vehicle types are
not differentiated. For instance, the multi-class version of the physics-
regularized Gaussian Process model reduces the MAPE to 0.21 for flow
and 0.16 for speed, compared to 0.23 and 0.17, respectively, in the mono-
class version. A similar pattern is observed with the physics-informed
LSTM model: the mono-class version yields MAPE values of 0.18 (flow)
and 0.15 (speed), while the multi-class version improves performance to
0.17 and 0.11, respectively. Although these reductions may seem modest
in absolute terms, they are consistent and meaningful—especially in real-
time traffic control scenarios where predictive precision is critical. The
multi-class models enhance the network's ability to capture traffic patterns
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by enabling the modelling of each vehicle class (e.g., cars and trucks) with
distinct dynamics.

Second, the trade-off between training time and prediction accuracy
has significant implications for model architecture and overall
performance. The multi-class physics-informed LSTM model achieves the
best predictive performance, particularly in the multi-class case, with error
levels of 0.17 for flow and 0.11 for speed. This improvement stems from
the LSTM’s inherent ability to effectively capture temporal dynamics and
long-term dependencies in traffic data.

In addition to its superior predictive accuracy for both flow and speed,
the multi-class physics-informed LSTM model is also computationally
efficient, requiring only 2,109 seconds for training. In contrast, the multi-
class physics-regularized Gaussian Process (PRGP) model demands
significantly more computational resources, with a training time of 18,200
seconds.

This substantial difference in training time stems from the
fundamental nature of the two models. The physics-informed LSTM (PI-
LSTM) relies on iterative, gradient-based optimization over multiple
epochs, whereas the PRGP model depends on matrix-based computations.
When physical knowledge is incorporated into the PRGP framework, the
regularization scheme and the covariance structure must be adapted
accordingly, increasing computational complexity. PRGP's kernel-based
architecture becomes more cumbersome when integrating physical
constraints. In contrast, PI-LSTM enables a more modular and flexible
integration of physical knowledge through modifications to the loss
function, enhancing its scalability and adaptability to diverse traffic
dynamics.

5. CONCLUSIONS

In this study, we implemented and evaluated two models for traffic
state prediction: the physics-informed Long Short-Term Memory (PI-
LSTM) model and the physics-regularized Gaussian Process (PRGP)
model, applied to both mono-class and multi-class traffic data. The models
were tested using a real-world highway dataset for predicting vehicle flow
and speed.

The results indicate that multi-class models consistently outperform
their mono-class counterparts by achieving higher prediction accuracy
through the incorporation of vehicle-specific dynamics.
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Among the evaluated approaches, the multi-class PI-LSTM model
demonstrated superior predictive performance while also significantly
reducing training time. Its architecture is comparatively simpler to
implement, requiring only modest adjustments to the loss function to
incorporate physical constraints. In contrast, although the PRGP model
also benefits from physics-based regularization, its implementation is more
complex due to the need for modifying kernel structures and managing
computationally intensive matrix operations. This leads to higher
computational costs, making it less suitable for real-time applications.

Overall, the findings suggest that the multi-class physics-informed
LSTM model offers the best trade-off between predictive accuracy,
computational efficiency, and implementation complexity. It stands out as
a practical and effective solution for real-time traffic prediction in
heterogeneous traffic environments.
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