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ABSTRACT 

Evaluation of cell shape parameters in microscopy images is essential for 

medical image analysis because: i) supports the development of automatic blood 

cell analysers, ii) facilitates cell image classification, and iii) aids in cell health 

evaluation. Staining is a fundamental technique used in biology and medical fields 

that enhances visibility of miroorganisms or cells that are difficult to distinguish. 

This process involves adding colour or chemical dyes to specimens to increase 

their contrast under a microscope. However, many experimental conditions do not 

allow staining, making unstained brightfield microscopy the only feasible 

solution. This handicap is the most challenging problems in medical imaging. The 

present paper aims to count and evaluate cell shape parameters in unstained 

images and to deduce the cell health states. A unique dataset including cells that 

reside in environments with different toxicity levels. The health state of cells is 

correlated with morphological parameters such as the shape (which is inherently 

deformable), texture and area of the cells. The present paper reports the 

application of modern deep learning architectures in cell counting and cell area 

determination. The results show a correlation between morphological changes and 

environmental toxicity levels in which the cells reside. 
 

Keyword(s): unstained Brightfield images, biomaterial toxicity, cell 

segmentation, U-NET architecture  
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1. INTRODUCTION

Research in medical sciences relies heavily on microscopy imaging as 

a non-invasive tool for diagnosis and treatment evaluation. Advancements 

in microfluidics and single-cell technologies, single- cell manipulation 

have made separation and isolation possible (Whitesides, 2006; Baysoy et 

al., 2023). Over the past two decades, the advancements in fabricating 

precise microfluidic chambers have provided not only greater control of 

the experimental plate but also the ability to use micropatterned surfaces 

to test cell attachment, cell growth etc. (Uka et al., 2017; Schurr et al., 

2022). Once properly isolated in multiparametric microfluidic chambers, 

cells can be treated and monitored though imaging technologies at 

controllable throughput (Rane et al., 2017). Imaging technologies include 

the use of portable brightfield microscopy (Ozcan 2014; Gӧrӧcs et al., 

2018), digital in-line holography (Martin et al., 2022), computational 

imaging (Uka et al., 2022) and computation on portable computing units 

(Uka et al., 2021; Polisi et al., 2023). An important area of research that 

relies heavily on imaging technologies to study biological systems at the 

cellular level is biomaterial risk assessment (Dollinger et al., 2017; 

Gribova et al., 2023). In these settings medical practitioners need to 

evaluate personalized level biotoxicity tolerance of a patient against a 

series of potential biomaterials for a specific transplant. The toxicity levels 

of a biomaterial can be assessed through a series of measurements 

conducted in microfluidic chambers, including impedance measurement 

(Chmayssem et al., 2021; Chmayssem et al., 2022), chronoamperometric 

measurements (Rodrigues et al., 2008; Dincer et al., 2022), genotoxicity 

(Li et al., 2018), microscopy (Polisi et al., 2020; Uka et al., 2021), pH 

measurement (Tovar et al., 2020; Magnusson et al., 2013) etc. When 

conducting work on these chambers, a fundamental requirement is 

minimizing or completely eliminating the interference of different data 

acquisition tools. To obtain accurate impedance or chronoamperometric 

measurements, it is essential to reduce the presence of free ions as much 

as possible. This constrain prevents using staining as a procedure, making 

unstained brightfield imaging the only available solution. However, the 

quality of the images is diminished, and the contrast remains low, as the 

images have to be acquired within microfluidic chips where cells are 

floating in fluids that provide nutrition to the cells. The variations on the 

index of refraction of the material of the chamber and of the fluids 

negatively affects the quality of the images. The fluids are mostly 
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hydrogels, which mimic the extracellular matrix present in the biological 

systems. These hydrogels supply nutrients and support cell growth for the 

cells as the cells are monitored over a two-weeks period. However, these 

hydrogels that limits the use other imaging modalities such as phase 

contrast microscopy etc. The low contrast at the edges of the cytoplasm 

would create difficulties in correctly providing a quantitative measure of 

the changes in the cell texture and morphology. Some images have few 

hundreds of cells, and an automated counting would be the only 

appropriate solution to save medical practitioners’ time. To develop 

optimal solutions for various datasets, several challenges are introduced at 

leading conferences, where datasets are manually labelled to establish a 

consistent ground truth for image analysis. 

The 2018 Data Science Bowl is a relevant challenge with a focus on 

cell nuclei segmentation from microscope images (Caicedo et al., 2019). 

This served as a good platform to work on and to develop models that 

would segment nuclei from stained cells from fifteen biological studies 

across different experimental conditions. The researchers compiled a 

collection of 37,333 manually labelled nuclei in 841 2D images from over 

thirty trials involving various samples. Due to the inherent difficulty, of 

very low contrast the organizers of the challenge had intentionally 

excluded electron microscope and unstained brightfield images (Caicedo 

et al., 2019). Figure 1 depicts the images here reported.  
  

 

Fig. 1: Samples of the images of the cells to be analysed. 
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The top solutions to the challenge involved the use of deep neural 

networks. Key elements are: i) sophisticated data augmentation and data 

post-processing (best performing solution), ii) careful use of loss function 

(second best solution), and iii) use of Mask-RCNN architecture. An 

important finding here reported was that the variation between manually 

annotated images by different practitioners was larger than the difference 

between a labeller and a trained model. Figure 2 depicts these results. We 

observed a similar behaviour represented by a 1-2% difference between 

two different labellers for the same image. In automated cell image 

classification pre-processing in both the spatial domain. and in the 

frequency domain is reported to be very important in overall cell 

classification (Uka et al., 2020; Polisi et al., 2023).  

Fig. 2: Image Annotations, courtesy of (Caicedo et al., 2019). 

Other intuitive techniques have proven to improve the overall 

accuracy in cell nuclei segmentation. Budginaitė et al., (2021) presented 

an end-to-end deep learning-based system for cell nuclei segmentation and 

consecutive lymphocyte identification in H&E-stained 20 magnified breast 

and colorectal cancer images. This study also showed that nuclei 

annotation masks with an additional active contour layer will improve 

nuclei segmentation accuracy by 1.5 percent.
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U-Net architecture variations have proven successful on several 

datasets. Long presented a lightweight U-Net (called U-Net+) with a 

modified encoded branch capable of low-resource computations (Long et 

al.,2020).  
 

Fig. 3: Validation losses of different architectures, courtesy of (Long et al.,2020). 

 

Huang et al., (2020) proposed an improved Unet3+ that provides for 

full-scale skip connections along with deeper supportive supervision. Low-

level information from feature maps is combined with high-level 

understandings of these interconnections. The authors suggest that the 

network parameters for this U-Net be reduced to enhance computation 

efficiency. They also construct a classification-guided module and propose 

a hybrid loss function to improve the organ border and reduce over-

segmentation. 

Li et al., (2018) focused on the accurate and automated liver and tumour 

segmentation methods essential in clinical practice. While current 2D 

convolutions fail to fully utilize spatial information along in three 

dimensions (3D), and 3D convolutions are challenging due to high 

computational costs. To address these limitations, the authors propose a 

new hybrid high-density connection U-Net called Hdense U-Net. The 

model consists of a 2D high density U-Net for efficient feature extraction 

within lice and a 3D counterpart for aggregating the volume context of 

liver and tumour segmentation. 

Size, shape, location variability, and poorly defined boundaries make 

segmentation of liver tumours challenging. 2D DenseU-Net integrates 

densely connected paths with U-Net connections, differentiating itself 

from DenseU-Net approaches by having U-Net connections added 
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between the encoder and decoder components. Consequently, the network 

enables the storage of low-level spatial features for better context 

exploration. The dataset used comprised 131 train images and 70 test 

images, all of which were 3D abdominal CT scans.  

Weng et al., (2019) developed three types of basic operations based on 

search space to automatically locate two cell architectures for semantic 

image segmentation: DownSC and UpSC. It is inspired by the U-Net 

architecture. They show the results on three datasets: ultrasonic nerve 

datasets, magnetic resonance imaging datasets, and computed tomography 

datasets. Their architecture achieves greater performance with fewer 

parameters than U-Net without any pre-training.  

Zeng et al., (2019) proposed a RIC-U-Net (residual inception channel 

attraction U-Net) for nucleus segmentation. To segment the nucleus better 

efficiently on RIC-U-net, residual blocks, multi-scale, and channel 

attention mechanisms are used. They also compare it to CP and Fiji, two 

standard CNN segmentation approaches. The Cancer Genomic Atlas 

dataset was used, which included thirty complete slide images. To generate 

regions dense in nuclei, the images are cropped into sub-images, each with 

a size of 1000x1000.  

Developing more effective post-processing approaches to address the 

problem of cell overlap is of great importance. To achieve an accurate 

evaluation of the images in this study, we employ a two-step procedure: 

segmentation of the cell nuclei followed by segmentation of the entire cell. 

When the density of the cells in the microfluidic chamber is low, no 

overlap between different cells occurs. However, when the density exceeds 

a certain threshold, overlapping between the cytoplasm of different cells is 

notable. Despite this, the cell nuclei don’t overlap, although contiguous 

nuclei are observed. Direct segmentation of the nuclei enables the accurate 

determination of correct cell number in each image. Other studies have 

utilized Faster-RCNN architectures for cell counting by focusing solely on 

the nucleus (Uka et al., 2020b). Cell imaging plays a crucial role in 

biomaterial risk assessment. A significant area of research focuses on 

quickly and personally assessing the biocompatibility of a biomaterial for 

patients receiving an implant. Although these measurements could be 

conducted using chemical tests, such methods may restrict other cell 

measurements. Therefore, microscopy is favoured as a non-invasive 

technique to replace invasive chemical tests on cells. In this work, we used 

images of cells in contact with polyarginine 50 (PAR50) and UniFast, two 

biomaterials commonly used in dentistry. We trained models for cell 
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segmentation and cell counting using U-Net architectures with various 

parameters. Based on the results, we selected the best optimizer and the 

best loss function was chosen for this specific dataset. The results of the 

cell shape parameters were then used to assess the relative toxicity of these 

biomaterials on cells.  
 

 

2. MATERIALS AND METHODS 

The health of Balb 3T3 cell in contact with different biomaterials is here 

analysed. Images are captured using a brightfield microscope, resulting in 

challenges such as low contrast, non-uniform background illumination etc. 

A total of 15 grayscale images, each with resolution of 1024x1280 pixels, 

were collected, representing a diverse range of cell shapes. Balb 3T3 cells 

exhibit a star- like morphology, characterized by a broad cytoplasm and 

clearly visible organelles within the nucleus. 

Once the images were acquired, manual nucleus labelling and the entire 

cell (both the nucleus and the cytoplasm) subsequently occurred using 

APEER platform (https://www.apeer.com/app/). Representative images 

are in Figure 4 depicted. Nucleus identification is crucial, as it facilitates 

accurate counting of contiguous cells, even in cases of cytoplasm overlap.  

  

 

Fig. 4: Example of original images and the labelled images. Only the nuclei are 

labelled. 

 

Figure 5 depicts the original images are cropped to size of 256x256 

pixels, resulting in a total of 60 labelled images. Using cropped images 
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greatly reduces the computational complexity, as the runtime is 

proportional to the number of the pixels in an image times the number of 

the weights in the kernel. 

Fig. 5: Cropped images from the original and their masks. 

The U-Net architecture is here employed to identify and segment the 

nuclei. This architecture utilizes encoders and decoders in a contracting 

and expanding path, respectively. Unlike architecture with dense layers, 

U-Net can process images of any size. During the expansive path, the

images are resized to their original dimensions using the transposed

convolution technique for up-sampling. The process is iteratively repeated

until the image is transformed to satisfy the prediction requirements at the

highest level of the architecture. The aim is to minimize the difference

between the original and the reconstructed images. U-Net excels at image

localization, performing by pixel-by-pixel predictions, and is particularly

effective in generating good prediction even with a limited number of

images (Ronnenberger et al., 2015).

Table 1. U-NET model summary 

Convolution layer 1 ( 256, 256, 1) 

Max Pooling 1 ( 128, 128, 64) 

Convolution layer 2 ( 128, 128, 128) 

Max Pooling 2 ( 64, 64, 128) 

Convolution layer 3 ( 64, 64, 256) 

Max Pooling 3 ( 32, 32, 256) 

Convolution layer 4 ( 32, 32, 512) 

Max Pooling 4 ( 16, 16, 512) 

Convolution layer 5 ( 16, 16, 1024) 

Convolution layer 6 ( 32, 32, 512) 
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Convolution layer 7 ( 32, 32, 512) 

Up sampling ( 64, 64, 512) 

Convolution layer 8 (64, 64, 256) 

Convolution layer 9 (64, 64, 256) 

Up sampling ( 128, 128, 128) 

Convolution layer 10 ( 256, 256, 1) 

 

Semantic segmentation was first proposed in the 1970s as one of the 

most important research technologies for computer vision. It seeks to 

classify every pixel or point in the scene into many areas with specified 

semantic categories (Zhang et al., 2019). 

The model in this work consists of 10 convolution layers and 4 max-

pooling layers. Tables 1 present the architecture of the U-Net model, 

illustrating how the image size changes across the layers, as well as the 

corresponding parameters. The input size of the image is (256, 256, 1) and 

at the end of the bottleneck, it is reduced to (16,16,1024). The model is 

trained with for 100 epochs and the batch size is 4. Keras callbacks are 

used to implement: i) the weights are saved only if there is any 

improvement in the validation loss, and ii) the model will stop if there is 

no improvement in the validation loss. The training of the model was 

performed on NVIDIA GPU P4000, which is equipped with 1792 CUDA 

cores, 8 GB of GDDR5 memory and 243 GB/sec memory bandwidth. 

31.031.685 parameters were used in this training.  

 
 

3. RESULTS AND DISCUSSION 

The models were trained using U-Net architecture in two phases. First, 

they were trained with labels/masks that included both the nucleus and the 

cytoplasm to determine the confluence (total area covered by the cells). 

Next, they were trained with labels/masks where only the nucleus was 

labelled. Then we have tested our dataset using these trained models were 

then tested in a dataset comprising 12 images, each with resolution of 

1024x1280 pixels. The initial results of the testing phase identify the nuclei 

and also some artefacts are shown in the Figures 6-8.  
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Fig. 6: Cell segmentation PAR50 

Several optimizers were tested, but the Adam optimizer proved to be 

the most effective. This optimizer is widely used in deep learning tasks, 

and according to Jaber et al., (2022), it optimizes the entire hyperparameter 

space while keeping the optimizer function constant. In medical image 

datasets, when other functions outperformed the Adam optimizer, 

researchers have further optimized this function to achieve higher 

accuracy, demonstrating the potential of such a functions (Zhang et al., 

2022). The effectiveness of the Adam optimizer is commonly reported not 

only in other studies focusing on microscopy medical images (Sun et al., 

2024) but also in those involving photographic images (Rajput et al., 

2023). Several loss functions were evaluated, with the binary cross-entropy 

loss function yielding the most optimal performance. 

Fig. 7: Cell segmentation Unifast. 
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Fig. 8: PAR50 representative image (a) original image, (b) binary 

segmentation/area, (c) nuclei. 

 

A post processing step is added to remove the artefacts. After 

identifying the objects from the model, the average object area is 

calculated. Any object with an area smaller than a threshold is removed. 

The dataset consists of 15 images in total, with three used for training and 

12 left for evaluation purposes. Other studies have attempted to segment 

cells from brightfield images. For example, Ali et al., (2012) developed a 

series of algorithms to automatically segment HT1080 and HeLa cells, 

successfully identifying over 80% of the cells and over 75% of the nuclei. 

In our analysis of the dataset, we missed around 1-2% of the total cell 

count. In a similar attempt, Fishman et al., (2019) focused solely on 

segmenting the nuclei of A549 cell lines. In contrast, our work segments 

both the nucleus and the cytoplasm to determine the overall cell area, 

including both cell components: the nucleus and the deformable 

cytoplasm. The results are in Table 2 summarized. We have segmented the 

entire cell regions and counted the number of cells. By dividing the total 

confluency (in μm2) by the number of cells, we calculated the average area 

per cell (see the fourth column in the Table 2). The cells in contact with 

PAR50 have an average area of 2940 μm2, while cells in contact with 

UniFast have an average area of 1856 μm2. If these areas were 

approximated circular, the corresponding radii would be 31 μm for PAR50 

and 24 μm and UniFast. These results suggest that UniFast exhibits higher 

toxicity compared to the PAR50 biomaterial.  

 

Table 2. Confluency, number of cells per image and average area per cell 
 

Representative 

Images Confluency (µm2) 

Number of 

cells Area per cell 

PAR50_01 229773,9 74 3105 
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PAR50_02 257468,8 87 2959 

PAR50_03 292245,5 103 2837 

PAR50_04 339722 110 3088 

PAR50_05 228003,8 84 2714 

Unifast_01 229218,1 125 1833 

Unifast_02 156468,5 74 2114 

Unifast_03 265640,8 164 1619 

4. CONCLUSION

Cell imaging is a complex challenge, and its analysis and optimal 

quantitative evaluation depends on various factors including, experimental 

conditions, cell texture, cell conditions and also on the appropriate 

selection of the parameters for the training architecture. It is widely 

accepted in the literature that unstained brightfield images represent the 

most challenging set of images for deep learning techniques. Here, we 

performed cell counting and segmentation of cells in contact with two 

different biomaterials, PAR50 and UniFast to determine their relative 

toxicity. A series of combinations of different optimizers and loss 

functions were tested, and the best pair was selected for the images 

presented here. The combination of Adam optimizer and binary cross-

entropy loss functions provided the highest accuracy. We evaluated the 

average area of the Balb/3T3 cells in the images, and from the area, we 

deduced that UniFast has a higher toxicity when compared to PAR50. 

Previous studies have reported the toxicity PAR50 is dose-dependent, with 

high doses of polyarginine causing membrane disruption and cell death 

(Mitchel et al., 2000). Other previous studies have indicated that UniFast 

toxicity is associated with residual monomer leaching (Leggat et al., 2003). 
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