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ABSTRACT 

The integration of Internet of Things (IoT) technologies into Personalized 

Online Learning (POL) systems has revolutionized educational paradigms, 

enabling the delivery of individualized and dynamic learning experiences. 

This paper offers a comprehensive exploration of IoT-based POL systems, 

synthesizing findings from existing research to highlight main personalization 

components and algorithms. These systems leverage IoT data—such as learner 

profiles, environmental contexts and physiological responses—combined with 

adaptive learning algorithms to tailor content and create responsive learning 

environments that address individual learner needs. Key algorithms, including 

learning analytics, machine learning and deep learning, are analyzed for their 

roles in enabling adaptive learning pathways and context-aware 

personalization. By synthesizing 65 primary studies, this paper identifies both 

current advancements and research gaps, providing actionable insights and 

future directions for enhancing online learning personalization. The findings 

demonstrate that IoT-enhanced POL systems hold significant potential to 

transform education by accurately classifying learners, adapting to diverse 

needs and creating effective, dynamic learning experiences. 

Recommendations for researchers, educators and developers are offered to 

further the adoption and optimization of IoT-driven personalized learning 

solutions. 
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1. INTRODUCTION

Online learning systems have gained significant traction in modern 

education, offering flexibility, accessibility and scalability. One of the 

most transformative developments in this domain is the shift towards 

personalized learning, where systems adapt to the individual needs and 

learning preferences of students. Personalization in online learning 

enhances engagement, retention and academic performance by tailoring 

content, pace and feedback mechanisms supporting a more effective and 

efficient learning process, to dynamically respond to student needs and 

behaviors (Jando et al., 2017). 

The Internet of Things (IoT), characterized by interconnected devices 

capable of collecting and exchanging data, is emerging as a key enabler of 

personalized learning environments and playing an increasingly vital role 

in this transformation. IoT enables the collection of real-time data through 

sensors, wearables and other smart devices embedded in the learning 

environment. These devices can monitor learner behavior, physiological 

responses, environmental conditions and interactions with learning 

materials (Al-Emran et al., 2020).  

The integration of IoT into education has transformed learning 

environments, enabling Personalized Online Learning (POL) through the 

use of real-time data from interconnected devices (Yao, 2017). IoT-driven 

systems, such as context-aware ubiquitous learning environments and 

sensor-based feedback mechanisms, provide dynamic educational 

experiences tailored to individual needs. In personalized online learning, 

IoT incorporates wearable devices, mobile platforms and environmental 

sensors, all of which generate data streams that adaptive learning 

algorithms process to enhance student engagement and performance. IoT-

enabled personalized learning integrates different data sources, including 

learners' preferences and profile, wearable biosensors, environmental 

sensors, facial recognition and contextual inputs, as personalization 

component approaches to tailor educational experiences (Shapsough and 

Zualkernan 2020). 

Machine Learning (ML) algorithms play a vital role in processing the 

large volumes of heterogeneous data generated by IoT devices in 

educational contexts (Adi et al., 2020). Algorithms such as reinforcement 

learning, deep learning and classification methods, enable the development 

of adaptive learning paths and personalized content delivery by analyzing 

learner behavior, biological and physiological responses and contextual 
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factors. ML techniques are increasingly being used to classify learners, 

recommend content and assess cognitive and emotional states, thereby 

improving the personalization and efficacy of IoT-based learning systems 

(Camacho et al., 2020). 

The primary objective of this systematic review is to identify, 

categorize and analyze the existing personalization components and 

machine learning (ML) algorithms employed in IoT-based POL systems. 

By reviewing current literature, this study aims to provide a comprehensive 

framework for understanding the key personalization components and the 

main ML techniques utilized to process these components in order to create 

personalized learning experiences. Additionally, the review will explore 

the challenges, such as device and data heterogeneity, data privacy and 

algorithmic bias, associated with integrating ML into IoT-enabled learning 

environments. 

While IoT holds immense potential for improving personalized 

learning, effectively integrating these technologies into learning 

environments presents significant challenges. The inherent complexity of 

IoT-based systems—comprising numerous interconnected devices, real-

time data processing and adaptive learning pathways—demands advanced 

design and implementation strategies. Notably, there is a lack of 

comprehensive reviews that explore how IoT is used to support 

personalization in online learning, particularly regarding the learning 

components and algorithms that enable such personalization. Existing 

literature is fragmented, often focusing on IoT in education or personalized 

learning separately. However, there is limited systematic exploration of the 

intersection of these fields and how IoT technologies can be utilized to 

achieve meaningful personalization in learning environments (Al-Emran 

et al., 2020; Hlioui et al., 2016). Furthermore, while algorithms and learner 

models are central to personalization, the specific components that enable 

it —such as real  real-time feedback, context-aware sensors and adaptive 

content delivery—remain underexplored in the current body of research 

(Mavroudi et al., 2019). 

Thus, there is a pressing need for a systematic review that explores ML 

algorithms used within IoT-based personalized or adaptive online learning 

systems. Such a review is crucial to identifying trends, challenges and 

research gaps, while providing a detailed examination of the computational 

techniques used to process personalization factors to adapt learning 

experiences in IoT-driven POL systems. 
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This review aims to offer valuable insights for researchers, educators 

and technology developers seeking to enhance the design and 

implementation of POL systems leveraging IoT. By doing so, it contributes 

to the expanding body of literature in this interdisciplinary field. 

The primary objectives of this study are as follows: i) to provide a 

comprehensive overview of the personalization components used in IoT-

based online learning systems, such as learner’s profile and environmental 

context; ii) to review the algorithms that underpin POL within IoT 

environments, including ML, rule-based and hybrid approaches; iii) to 

identify key trends, challenges, and gaps in the literature regarding the 

integration of IoT based personalization components in POL; and iv) to 

offer insights into future research directions that could advance the 

personalization of learning through IoT technologies. 

To achieve these objectives, the study seeks to answer the following 

research question: 

 What are the primary personalization components used in IoT-

based POL systems?

 What are the primary ML algorithms employed to achieve

personalization in IoT-based POL systems?

Our findings indicate that learner’s learning style, prior knowledge, 

location, preferences, and emotions are the most commonly used 

personalization components. Furthermore, 32% of selected studies use 

different learning analytic to process and analyze personalization data, 

whereas the second most commonly used approach of 28% is the 

combination of different algorithms to provide personalization services in 

IoT based POL systems, meanwhile cryptographic techniques are utilized 

to enhance security of IoT-based POL systems and not as personalization 

tool.  

The paper is structured as follows: Section 2 discusses IoT-based POL 

systems, emphasizing the role of IoT in education and its potential for 

enhancing personalization. Section 3 focuses on the systematic review 

research methodology. Section 4 represent the results of the study by 

identifying ML algorithms utilized in these systems and providing a 

comparative analysis of different techniques. Finally, Section 5 presents 

conclusions and future directions, highlighting opportunities for further 

research and advancements in this field. Following literature review, we 

aim to present the background of our research. 
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2. RESEARCH BACKGROUND

Personalization in online learning systems refers to the ability of a 

learning platform to adapt content, instructional methods, and feedback to 

meet individual learner needs. Personal Online Learning (POL) has 

increasingly been recognized as a powerful approach to improve learner 

engagement and academic outcomes. POL aims to deliver customized 

learning experiences that adapt to individual learner preferences, 

behaviors, and cognitive needs. The primary focus of POL systems is to 

use data-driven algorithms and technologies to dynamically modify 

learning paths, instructional strategies and content to suit each learner’s 

specific requirements. Traditional online learning platforms have relied on 

static learner profiles, prior academic performance and self-reported 

preferences to personalize content delivery. Early personalization methods 

were largely rule-based, with limited flexibility to adapt to the evolving 

needs of learners during the learning process (Jando et al., 2017). 

However, with advancements in artificial intelligence (AI) and machine 

learning (ML), adaptive learning systems have emerged, enabling more 

dynamic and responsive personalization. These systems leverage learning 

analytics, user interaction data, and assessment outcomes to refine content 

relevance and the effectiveness of learning materials (Tang and Wang 

2018; Kulbach et al., 2020). 

Despite these advancements, the scope of personalization in early 

systems was confined to data that learners generated through digital 

interactions, such as clicks, quizzes and time spent on specific tasks. This 

approach overlooked critical contextual factors—such as the learner’s 

physical environment, emotional state, and engagement levels—that 

influence the learning experience (Bernacki et al., 2021). The introduction 

of IoT technologies in POL systems addresses this gap by offering a 

broader and more nuanced dataset. IoT provides real-time insights into 

how learners engage with content within both physical and digital 

environments. Over the past few decades, POL systems have evolved, with 

the integration of the Internet of Things (IoT) introducing new dimensions 

to personalization. IoT enables real-time data collection from learners’ 

physical, cognitive, and emotional environments (Adi et al., 2020). By 

leveraging a combination of environmental, physiological, and behavioral 

data, IoT enhances learning outcomes.  

IoT sensors can track factors such as temperature, lighting, and noise 

levels to optimize the learning environment for each student fostering 
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better focus and engagement (Mohana et al., 2023; Yau and Hristova 

2018). This layer of contextual awareness enhances traditional e-learning, 

enabling learning systems to adjust content based on environmental 

variables and learner interactions (Ciolacu, et al., 2019). Personalization 

remains a key objective of modern online learning systems, with IoT 

playing a central role in delivering tailored educational experiences (Jando 

et al., 2017).  

The integration of IoT data into ML algorithms is essential for 

developing adaptive learning systems that personalize the educational 

experience. IoT devices generate vast amounts of data, which are 

processed by ML models to make real-time predictions about the learner's 

needs. These models include reinforcement learning, neural networks, and 

clustering techniques, all of which help classify learners, recommend 

resources, and adjust learning content dynamically based on environmental 

and physiological feedback (Kim et al., 2019).  

In summary, the integration of IoT with ML facilitates the creation of 

intelligent systems that can anticipate and adapt to learner needs, thereby 

improving the overall efficacy of POL environments. Building on this 

background of IoT integration in POL systems, this paper will now address 

the research methodology used in this study. 

3. METHODOLOGY

The objective of this study is to identify what are the personalization 

components and Machine Learning (ML) algorithms in IoT-based POL 

models. The primary focus is on the intersection of personalization 

components and ML Algorithms employed to process these components’ 

data within IoT based POL systems. To achieve a comprehensive overview 

of the area, we conducted an extensive review of IoT in education papers 

that address POL methods, techniques, models and frameworks. 

Various systematic review study guidelines can be used for such 

review, including those proposed by Littell (2006), Kitchenham and 

Charters, (2007), and Kitchenham (2004). However, the systematic 

mapping study guidelines by Petersen et al., (2015) were selected for this 

study as they consolidate the best practices suggested by other researchers. 

According to Petersen et al., (2015), a systematic mapping review process 

begins with formulating research questions (RQs). The subsequent steps 

involve screening the papers based on their titles, abstracts and keywords 
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metadata, followed by a full content to answer the RQs. The systematic 

mapping process used in this study is depicted in Figure 1. 

Fig. 3: The systematic review process (Petersen et al., 2015). 

Based on the study’s motivation and objectives (Section 1), the 

following research questions (RQs) were proposed to guide the search and 

selection process: 

RQ1: What are the primary personalization components used in IoT-

based POL systems? 

RQ2: What are the primary ML algorithms employed to achieve 

personalization in IoT-based POL systems? 

The first step in conducting a systematic review was identifying the 

search string for publications. To derive keywords and formulate the 

search string from research questions, we applied the PICO (Population, 

Intervention, Comparison, and Outcomes) criteria developed by Petersen 

et al., (2008). These criteria are defined in Table 1.  

Table 1: PICO of the study 

Population Primary studies which integrate IoT in POL systems (both 

theoretical and empirical studies). 

Intervention Personalization Components and ML Algorithms utilized to 

process these components in IoT based POL systems. 

Comparison Comparing different ML Algorithms employed to process 

Personalization Components in IoT based POL systems.  

Outcome Evaluation of Personalization Components and ML Algorithms 

utilized to process these components in IoT based POL systems. 
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To explore how IoT is integrated in POL systems in primary studies, 

we formulated a search string designed to capture the combination of IoT 

and POL systems. The three main concepts of the search string— ‘‘Internet 

of Things’’, ‘‘Personalized” and “Online Learning’’— we derived from 

research questions. Our basic string was (Internet of Things AND 

Personalized AND Online Learning). To broaden the scope of our 

research, we reviewed the literature to identify synonyms or 

interchangeably used terms for these primary concepts. Using the Boolean 

operator AND, we combined the main concepts, while the OR operator 

was employed to include synonyms or interchangeable terms for each 

concept. 

For our research, we implemented the search string in ACM and 

IEEEXplore digital libraries, as well as in the Education Resources 

Information Center (ERIC) and Springer Link databases. We selected 

ERIC was selected as one of the primary education research and 

information databases, while ACM, IEEEXplore digital libraries and 

Springer Link database were chosen as key sources for engineering-related 

articles. To capture the latest trends, we limited the research between 

January 2017 and December 2023, as the integration of IoT in Education 

for personalizing online learning is an emerging field. Based on the 

research methodology outlined in this section, the subsequent section 

presents our findings, focusing on the ML Algorithms employed in IoT 

based POL systems. 

Table 2. Criteria used for including and excluding research studies 

Inclusion Criteria Exclusion Criteria 

- Included content of IoT that

investigates Educational

perspectives to Personalize

Online Learning i.e., methods,

frameworks and use cases

- Published between January

2017 and March 2023.

- Written in English with full-

text available.

- Peer-reviewed journal

literatures

- Duplicate papers from the same study in

different databases.

- Mention of IoT is tangential with different

scopes not directly related to Personalized

Online Learning

- Publications not written in English

- Publications not directly related to our topic

- Full-text is inaccessible

- Books and gray literature
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Papers were selected based on the research questions and the inclusion 

and exclusion criteria outlined in this mapping study (see Table 2). The 

screening process included reviewing titles, abstracts, and keywords 

identified through the search string. A total of 6,441 papers published 

between 2017 and 2023 were retrieved through database searches, with the 

majority sourced from the SpringerLink digital library. 

Fig.4. Selection of primary studies (Petersen et al., 2008). 

Phase 1 involved the automatic removal of 88 invalid sources not 

intended for citation, such as workshop programs, keynotes, book covers, 

speeches, retracted articles, PhD theses, and unpublished works. 

Additionally, 614 duplicate papers were automatically removed using 

spreadsheet software, leaving a total of 5739 references.  

Phase 2 applied further filtering based on the inclusion and exclusion 

criteria (see Table 4). First, titles and keywords were screened, reducing 

the number of studies to 2510. Next, abstracts were evaluated following 

the recommendations of Petersen et al., (2008), resulting in 96 candidate 

studies.   

In the final phase, following a full text reading of candidate studies, 31 

papers were excluded as they were not entirely relevant to our systematic 
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mapping study. This left a total of 65 accepted studies. Figure 2 illustrates 

the number of included and excluded papers for each phase. 

4. RESULTS AND DISCUSSIONS

From an initial sample of over than 6400 papers, 65 primary studies 

were identified as relevant for answering the research questions. The 

results of the systematic review study are presented as follows: 

4.1. Personalization Components in IoT based POL Systems 

The integration of IoT into POL systems enables the incorporation of 

various personalization components, each contributing to a more adaptive 

and learner-centric experience. The systematic review analysis identified 

three primary categories of personalization components in IoT-enabled 

learning systems:  

 Learner’s profile (77%): Includes elements such as learning

style, prior knowledge, preferences, and emotional state.

 Contextual adaptation (40%); Focuses on environmental factors

like location, time, and physical conditions.

 Pedagogical strategies (14%): Involves dynamic instructional

methods tailored to individual learning goals.

Figure 3 provides a visual representation of the distribution of these 

personalization components across the analyzed studies. 

Fig. 5: Personalization components categories. 
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The learner profile emerges as the dominant category of personalization 

components for providing POL services. It offers a comprehensive, multi-

dimensional framework that integrates psychological, academic, 

pedagogical, sociological, biological, cognitive, and demographic factors. 

The contextual awareness category encompasses components such as 

Environmental, Technological and Socio-Psychological Context 

components, enabling learning environments to dynamically adapt based 

on situational data. Meanwhile, pedagogical strategies focus on refining 

teaching and learning approaches to align with personalized needs. Table 

2 provides detailed summary results of personalization categories, their 

subcategories, number of studies utilizing each subcategory components, 

and their percentage over the total of selected studies 

Table 3: Personalization components categories and sub categories 

Components 

Category 

Components Sub Category No. of 

Studies 

Percentage 

Learner’s Profile Psychological Profile 23 35% 

Learner’s Profile Academic Performance 20 31% 

Learner’s Profile Pedagogical Profile 19 29% 

Learner’s Profile Sociological Profile 17 26% 

Learner’s Profile Biological Components 10 15% 

Learner’s Profile Cognitive Ability 8 12% 

Learner’s Profile Demography 3 5% 

Context-Awareness Environmental Context 14 22% 

Context-Awareness Technological Context 10 15% 

Context-Awareness Special Context 4 6% 

Context-Awareness Socio-Psychological Context 2 3% 

Pedagogies Pedagogical Strategy 9 14% 

Among these, in IoT based POL systems the psychological profile 

stands out the main factor for constructing an effective learner profile. 

Table 4 provides a summary personalization component exploited to build 

the psychological profile of the learner that are implemented by two or 

more selected studies.  
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Table 4: Psychological Profile Main Personalization Components 

Personalization 

Component 

No. of 

Studies 
Percentage References 

emotions 7 11% 

Perry and Edwards, 2019; 

Bourekkache and Kazar, 2020; Zhao 

et al., 2022; Fatahi, 2019; Dwivedi et 

al., 2018; Mesquita et al., 2016; 

Shrestha and Furqan, 2020 

engagement 3 5% 

Asad et al., 2024; Ciolacu, Binder and 

Popp, 2019; Yakoubovsky and 

Sarian, 2021  

motivation 3 5% 
Farhan et al., 2018; Elmalaki, 2021; 

Ghallabi et al., 2020 

interests 2 3% 
Benhamdi et al., 2017; Whalley et al., 

2020 

learning goals 2 3% Dwivedi et al., 2018; Ma and Li, 2021 

personality 2 3% Fatahi, 2019; Prihar et al., 2022 

attention 2 3% 
Camacho et al., 2020; Ciolacu, Binder 

and Popp, 2019 

needs 2 3% 
Prihar et al., 2022; Yakoubovsky and 

Sarian, 2021 

Personalized learning systems employ methods like MBTI personality 

typing and emotional desirability to create tailored environments. These 

systems incorporate motivational elements— such as encouraging 

messages, energetic music and animations— to enhance engagement 

(Fatahi 2019). Emotional states, including happiness, sadness, anger and 

fear, are monitored alongside stress management techniques to optimize 

learning paths. Tools like FLVCAS dynamically adapt content to reduce 

anxiety and support participation (Elmalaki 2021; Asad et al., 2024; Perry 

and Edwards 2019).  

Engagement is tracked through behavioral observations, facial 

recognition, and IoT-enabled data analysis, enabling adaptive content 

delivery (Camacho et al., 2020; Ma and Li 2021). Interactive platforms, 

such as IoT-based labs and collaborative discussions, promote active 

participation and teamwork. Additionally, real-time attention monitoring, 

powered by reinforcement learning, ensures sustained engagement 

(Bourekkache and Kazar, 2020; Wang, 2017; Farhan et al., 2018). 

Cognitive and immersive strategies utilize virtual environments and 

arts-based methods, such as reflective mosaics, to create interactive and 



AJNTS No 58 / 2024 (XXIX)    173 

emotionally engaging experiences. These approaches incorporate stress 

management and creativity, sustaining learners’ interest while aligning 

with their individual goals (Asad et al., 2024; Perry and Edwards, 2019; 

Kaisar and Chowdhury, 2020). 

Learners' interests and preferences paly a vital role in guiding 

personalized recommendations and collaborative environments. These 

strategies ensure that tasks align with individual goals, enhancing 

engagement and effectiveness. Reinforcement learning frameworks 

promote fairness and inclusivity by adapting to group variability and 

accommodating diverse learning needs (Dwivedi et al., 2018; Fatahi 2019; 

Zhao et al., 2022; Yakoubovsky and Sarian 2021). Intention inference 

techniques dynamically adjust content to meet learners' immediate needs, 

showcasing the potential of IoT-based systems to deliver dynamic, 

inclusive, and effective educational experiences (Asad et al., 2024; 

Shrestha and Furqan 2020). 

The second most commonly used factor to build the learner’s profile in 

IoT based POL systems is learner’s academic performance. Table 5 

summarizes the most commonly used personalization components for 

extracting learner’s academic performance data. Among these, prior 

knowledge and domain-specific skills constitute the primary components 

for constructing a comprehensive academic profile.  

Table 5: Academic Performance Main Personalization Components 

Personalization 

Component 

No. of 

Studies 
Percentage References 

knowledge and 

skill level 
7 11% 

Yau and Hristova, 2018; Zhao et al., 

2022; Ghallabi et al., 2020; Dwivedi 

et al., 2018; Benhamdi et al., 2017; 

Whalley et al., 2020; Reyes et al., 

2019  

performance 3 5% 

Elkobaisi and Al Machot, 2022; 

Ciolacu, Binder, Svasta, et al., 2019; 

Yakoubovsky and Sarian, 2021 

interaction 3 5% 
Yau and Hristova, 2018; Guo and 

Wang, 2021; Farhan et al., 2018 

progress 3 5% 

Rawat and Dwivedi, 2019; 

Shapsough and Zualkernan, 2020; 

Zou and Xie, 2018 

completed game 

stages 
2 3% 

Asad et al., 2024; Saxena et al., 2019 
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The development of learner modeling profiles in IoT-based POL 

systems heavily relies on modeling techniques that assess prior knowledge 

and categorize learners into various skill levels, such as beginner, 

intermediate, or advanced. These categorizations help tailor learning 

materials to meet individual needs effectively (Yao, 2017; Shapsough and 

Zualkernan, 2020; Ghallabi et al., 2020; Embarak, 2022). Frameworks 

evaluating proficiency and performance further refine recommendations 

for personalized content, ensuring alignment with the learner’s evolving 

capabilities (Yau and Hristova, 2018; Rawat and Dwivedi 2019). 

Progress tracking is another critical aspect enabled by IoT systems, 

which monitor metrics like completed assignments, interaction frequency 

messages exchanged, and time spent on specific tasks. This data helps 

identify learner progress and areas for targeted interventions (Yao, 2017; 

Ciolacu et al., 2019; Shapsough and Zualkernan, 2020; Zhao et al., 2022). 

Gamified elements, such as tracking progress through game stages, are 

integrated to maintain learner motivation and assess skill application in 

practical contexts, offering tailored challenges to promote growth (Guo 

and Wang, 2021).  

Interaction frameworks foster collaboration and engagement within 

IoT-enabled learning environments. These systems utilize real-time 

dashboards to provide feedback on learner behaviors, facilitating adaptive 

learning paths and increased involvement (Yao, 2017; Farhan et al., 2018;  

Saxena et al., 2019). Additionally,  historical data on courses previously 

taken ensures personalized content delivery, avoiding redundancy and 

building on prior learning (Rawat and Dwivedi, 2019). 

Level of study is a vital academic performance factor integrated into 

adaptive systems, aligning content complexity with learners’ academic 

stages and foundational  knowledge (Dwivedi et al., 2018). The inclusion 

of prior knowledge, skill levels, progress metrics, and interactive elements 

collectively supports personalized education models within IoT-based 

POL systems. 

Lastly, learner’s learning style, stands out as the most utilized 

personalization component, according to Table 6, emphasizing its role in 

constructing comprehensive learner profiles.  This component aligns 

instructional approaches with individual preferences, making it a 

cornerstone of effective IoT-based personalization in education. 
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Table 3: Pedagogical Profile Main Personalization Components 

Personalization 

Component 

No. of 

Studies 
Percentage References 

learning style 10 15% 

Shapsough and Zualkernan, 2020; 

Tortorella and Graf, 2017; Trifa et al., 

2019; Zhao et al., 2022; Ciolacu, 

Binder, Svasta, et al., 2019; Prihar et 

al., 2022; Dwivedi et al., 2018; 

Bourekkache and Kazar, 2020; 

Elmalaki, 2021; Soui et al., 2022 

preferences 7 11% 

Shapsough and Zualkernan, 2020; 

Yao, 2017;  Zhao et al., 2022; 

Benhamdi et al., 2017; Zou and Xie, 

2018; Mesquita et al., 2016; 

Yakoubovsky and Sarian, 2021 

language 

preferences 
2 3% 

Yau and Hristova, 2018; Ghallabi et 

al., 2020 

Personalized Learning Environments (PLEs) leverage to adapt to 

individual learners' unique styles and preferences. By integrating 

contextual data gathered from sensors, these systems enhance content 

delivery to align with learner’s unique needs. This adaptability extends to 

media preferences, enabling the presentation of content in text, video, or 

other formats that resonate with individual profiles. Such personalization 

approaches significantly improve engagement and comprehension, 

creating a more effective learning experience (Tortorella and Graf 2017; 

Dwivedi et al., 2018; Bourekkache and Kazar, 2020).  

Language preferences are another critical component of PLEs. These 

systems allow learners to access educational content in their preferred 

language, such as French or English, ensuring inclusivity and comfort in 

the learning process. Real-time adjustments to environments and 

strategies, guided by preferences and historical data, further enhance the 

learning experience. This dynamic personalization fosters a deeper 

connection between learners and their educational material (Yau and 

Hristova 2018; Benhamdi et al., 2017; Ghallabi et al., 2020). 

Adaptation to learning speeds and patterns is a hallmark of PLEs. These 

systems tailor content delivery rates to match each learner’s pace, reducing 

cognitive overload and facilitating better understanding. By analyzing 

learning patterns, adaptive pathways are crafted to meet the specific needs 



176      AJNTS No 58 / 2024 (XXIX) 

of each individual. This personalized pacing ensures learners can progress 

confidently while maximizing their educational outcomes (Trifa et al., 

2019; Zhao et al., 2022). 

The sociological aspects of learners are also addressed through 

personalized systems. By analyzing behavioral patterns and social 

interactions, PLEs create environments that reflect individual social and 

educational contexts. Collaborative efforts, such as group projects and 

forum interactions, are optimized to enhance teamwork and foster a sense 

of community. These sociological insights ensure that the learning 

environment supports both individual and group dynamics effectively 

(Yao, 2017; Bourekkache and Kazar 2020; Guo and Wang, 2021). 

Finally, immersive virtual environments enhance learner engagement 

by fostering collaboration and interaction in tailored educational setups. 

These environments provide opportunities for learners to engage with 

peers and systems in meaningful ways, promoting active participation and 

personalized educational outcomes. By integrating these diverse 

personalization components, PLEs offer adaptive, inclusive, and engaging 

learning experiences that cater to the needs of all learners (Wang et al., 

2017; Rawat and Dwivedi 2019; Adi et al., 2020). 

Table 4: Sociological Profile Main Personalization Components 

Personalization 

Component 

No. of 

Studies 
Percentage References 

behavioral 6 9% 

Bourekkache and Kazar, 2020; 

Zhao et al., 2022; Yao, 2017; Q. 

Wang et al., 2022; Adi et al., 2020; 

Guo and Wang, 2021 

interactions 6 9% 

Trifa et al., 2019; Phunaploy et al., 

2021; Ma and Li, 2021; Kim et al., 

2019; Elkobaisi and Al Machot, 

2022; Prihar et al., 2022 

sociological 

profile 
2 3% 

Bourekkache and Kazar, 2020; 

Zhao et al., 2022 

collaboration 

patterns 
2 3% 

Kim et al., 2019; Guo and Wang, 

2021 

Social cues, such as emotional responses and non-verbal 

interactions, play a pivotal role in IoT-based Personalized Online Learning 

(POL) systems by enabling real-time adaptation of learning environments. 
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These systems dynamically respond to learners' emotional states, creating 

a responsive educational setting that supports engagement and well-being 

(Elkobaisi and Al Machot, 2022). By incorporating these cues, IoT systems 

ensure that learners feel understood and catered to, fostering a more 

immersive and effective learning experience. The integration of social 

environments as a core component of learning design enhances the 

personalization of educational outcomes. Social modeling connects 

physical, technological, and pedagogical elements, creating a cohesive 

framework for adaptive learning experiences. By mapping horizontal and 

vertical social networks, these systems account for peer and hierarchical 

relationships, tailoring learning pathways to reflect the dynamics of the 

learner’s social interactions (Mavroudi et al., 2019; Guo and Wang 2021). 

To refine personalization further, IoT systems track social indicators like 

volunteering and leadership within collaborative settings. These insights 

are used to evaluate learners' roles and contributions, enabling the design 

of role-specific educational interventions. By acknowledging individual 

social dynamics, these systems not only enhance teamwork but also foster 

personal development, ensuring a well-rounded learning experience 

(Wang et al., 2017). 

Beyond social dynamics, IoT-based POL systems leverage 

biosensors to incorporate learners' biological features as personalization 

components. These systems analyze biometric data, such as heart rate, 

stress levels, and physical activity, to adapt content delivery and learning 

strategies. This biological dimension adds depth to personalization, 

ensuring that learners’ physical states are considered alongside their 

cognitive and social needs, creating a holistic learning environment. Table 

8 highlights the most commonly used biological features in IoT-based POL 

systems, showcasing their role in enhancing personalization within the 

education domain. By integrating these diverse components—social, 

emotional, and biological—IoT systems create adaptive, learner-centric 

environments that cater to individual preferences, capabilities, and 

contexts, driving effective and meaningful educational outcomes. 

Table 5: Main Biological Personalization Components 

Personalization 

Component 

No. of 

Studies 
Percentage References 

heart rate 3 5% 
Adi et al., 2020; Mylonas et al., 2023; 

Shrestha and Furqan, 2020 
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eye tracking 3 5% 
Guo and Wang, 2021; Betts et al., 

2020; Shrestha and Furqan, 2020 

fingerprint 

patterns 
2 3% 

Ciolacu, Binder, Svasta, et al., 2019; 

Soui et al., 2022 

blood pressure 2 3% Mylonas et al., 2023; Tsai et al., 2018 

physical 

activity, steps 
2 3% 

Shapsough and Zualkernan, 2020; 

Adi et al., 2020 

IoT-based systems employ innovative approaches to enhance 

personalized learning environments by integrating physiological data, 

creating a deeper understanding of learner engagement and needs. For 

instance, monitoring learners' heart rates provides insights into their 

engagement levels, allowing the system to dynamically adapt the learning 

environment. This real-time adaptation ensures learners remain in an 

optimal cognitive state, with task difficulty adjusted based on 

physiological responses to maintain focus and minimize cognitive 

overload (Adi et al., 2020; Shrestha and Furqan 2020; Mylonas et al., 

2023). Eye-tracking technology further personalizes learning by analyzing 

gaze patterns and focal points. By identifying areas of interest or difficulty, 

these systems deliver targeted teaching materials and offer interactive 

feedback, enhancing engagement and retention. This dynamic interaction 

between learners and content helps to create immersive educational 

experiences tailored to individual needs (Shrestha and Furqan 2020; Guo 

and Wang 2021; Betts et al., 2020). 

Fingerprint analysis, combined with Visual, Auditory, and Kinesthetic 

(VAK) learning styles, allows IoT systems to categorize learners based on 

their unique preferences. This biometric approach aligns content delivery 

with individual learning styles, ensuring that each learner receives material 

in the most effective format for their needs. Such alignment promotes 

deeper understanding and satisfaction in the learning process (Ciolacu et 

al., 2019; Soui et al., 2022). Blood pressure monitoring offers additional 

insights into learners' stress levels, highlighting the physiological impact 

of learning environments on performance. By incorporating this data, IoT 

systems can adjust teaching strategies to promote well-being, reduce stress, 

and maintain learner focus. This holistic approach not only supports 

cognitive engagement but also addresses the emotional and physical 

aspects of learning (Tsai et al., 2018; Mylonas et al., 2023). 

IoT-based systems further enhance personalized learning by 

incorporating data from physical activity, such as step counts, to assess 
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learners' overall activity levels. This data not only helps monitor physical 

health but also offers insights into how physical activity impacts cognitive 

performance. By tracking activity, these systems encourage healthy habits 

that can complement educational engagement, fostering a balanced 

approach to learning (Adi et al., 2020; Shapsough and Zualkernan, 2020). 

Electro-dermal activity (EDA), another important physiological metric, is 

analyzed to detect emotional responses. By monitoring skin conductivity, 

which fluctuates with changes in emotional arousal, IoT systems can gauge 

learners' emotional states in real time. This data allows for the dynamic 

adaptation of learning content, ensuring that materials are presented when 

learners are emotionally ready, thereby optimizing emotional engagement 

and improving their readiness to absorb new information (Tsai et al., 

2018). 

Facial recognition is implemented to observe and evaluate student 

behaviors, such as expressions and attentiveness, which are then used to 

refine teaching methods and engagement strategies (Soui et al., 2022). 

Additionally, learners’ memory span is measured using specific tests to 

tailor learning resources effectively, ensuring materials align with the 

individual's cognitive capacity and enhance retention (Benhamdi et al., 

2017). 

Cognitive abilities, states, and needs are utilized as personalization 

components in IoT based POL systems to adapt to individual learners' 

needs and preferences. For instance, mobile and adaptive learning 

applications utilize multimedia tools and interactive processes to create 

tailored experiences, ensuring content aligns with learners' cognitive 

profiles and engagement levels (Bourekkache and Kazar, 2020). Similarly, 

chatbots utilize natural language processing and learning ontologies to 

infer learners’ intentions, dynamically adapting the pace and content 

delivery to their unique abilities and preferences (Clarizia et al., 2018). 

Furthermore, wearable biosensors further enhance personalization by 

monitoring cognitive load and subjective well-being, enabling systems to 

adjust dynamically (Ciolacu et al., 2019). 

Electroencephalography (EEG) data is integrated into IoT-enabled e-

learning systems to extract brain activity data to provide insights into 

cognitive states and supports the development of context-aware learning 

experiences that align with individual learners' needs (Soni, 2019). 

Language development needs are addressed by designing scenario-based 

interactive environments for young learners. These systems allow 

educators to personalize content and interaction patterns, fostering 
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effective language acquisition and cognitive growth through tailored 

activities (Cheng et al., 2020). 

Personal capabilities are integrated through federated recommender 

systems, which adapt global models to local data, ensuring that 

personalized outcomes cater to the diversity in user behavior and 

preferences. This approach balances individual needs with broader 

learning objectives, creating a more effective and tailored educational 

environment (Wang et al., 2017). 

A primary demographic personalization component used to build the 

user profile is the learner’s age, which is used to adapt educational content 

to suit the developmental and cognitive capabilities of learners. For 

instance, fairness-aware IoT systems consider age-related variability when 

tailoring interactions and learning materials, ensuring inclusivity and 

equitable access for users of different age groups (Elmalaki 2021). 

Additionally, active personal learning environments utilize age data to 

enhance the relevance and engagement of content delivered through virtual 

tutors and smart devices, creating experiences tailored to individual learner 

profiles (Whalley et al., 2020). Personal details, including different 

demographic data, are integrated into IoT based POL model to plan 

personalized learning activities, ensuring the delivery of relevant and 

effective learning experiences (Zhao et al., 2022). 

One of the most significant benefits of integrating IoT into existing POL 

systems is the incorporation of the user's interaction context. By integrating 

and processing the contextual data, these systems achieve personalization 

by considering its influence and tailoring personalization services 

accordingly. The primary contexts integrated are environmental and 

technological contexts, ensuring that personalized services adapt 

dynamically to the user's specific environmental conditions and 

technologies they are using. Table 9 lists main environmental 

personalization components used in IoT based POL systems. 

Learners’ location is integrated into personalized learning systems 

using IoT sensors and GPS technology, allowing systems to adapt content 

based on real-time geo-positional data. For instance, systems can provide 

relevant learning materials and feedback tailored to the learner's immediate 

environment. Time as a contextual factor enhances personalization by 

adapting learning content to the learner’s schedule and preferences, 

ensuring optimal engagement periods (Yao 2017; Yau and Hristova 2018; 

Shapsough and Zualkernan 2020; Elkobaisi and Al Machot 2022). 
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Environmental factors such as noise levels, temperature, and air quality 

are monitored using IoT-enabled devices to provide optimal learning 

conditions. Noise levels are used to adjust content delivery to suit quieter 

or noisier settings, while temperature and air quality metrics support 

physical comfort and cognitive performance. Current environmental 

conditions, including humidity and light, are analyzed to create adaptive 

learning spaces that meet individual learner preferences and improve focus 

(Yau and Hristova 2018; Asad et al., 2024; Aydin and Göktaş 2023). 

Table 6: Main Environmental Context Personalization Components 

Personalization 

Component 

No. of 

Studies 
Percentage References 

location 7 11% 

Shapsough and Zualkernan, 2020; 

Yao, 2017; Yau and Hristova, 2018; 

Chen et al., 2019; Elkobaisi and Al 

Machot, 2022; Reyes et al., 2019; 

Whalley et al., 2020 

time 5 8% 

Yau and Hristova, 2018; Chen et al., 

2019; Elkobaisi and Al Machot, 2022; 

Reyes et al., 2019; Whalley et al., 

2020 

noise level 3 5% 
Yau and Hristova, 2018; Aydin and 

Göktaş, 2023; Saxena et al., 2019 

temperature 2 3% 
Aydin and Göktaş, 2023; Taherisadr 

et al., 2024 

air quality 2 3% 
Kumar, 2021; Aydin and Göktaş, 

2023 

Environment preferences are incorporated into IoT-enabled systems to 

create flexible learning environments. These systems adjust content 

delivery and interaction methods based on learner-specific environmental 

and technological settings. Flexible learning environments support diverse 

needs, accommodating both structured and exploratory learning 

approaches in different physical and virtual spaces (Mavroudi et al., 2019; 

Bondaryk et al., 2021). 

Advanced environmental personalization includes olfactory factors, 

such as the introduction of rosemary scents, which have been shown to 

enhance memory and concentration during learning tasks. Weather 

conditions and other external factors are also integrated into personalized 
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systems to adjust learning experiences dynamically. Technological and 

physical environments are mapped to align with pedagogical goals, 

ensuring that both infrastructure and content delivery are optimized for 

learner success (Mavroudi et al., 2019; Elkobaisi and Al Machot, 2022; 

Aydin and Göktaş, 2023). 

Regarding the technological context, cameras are used within IoT 

systems to facilitate real-time data capture and analysis, enabling 

personalized educational experiences by monitoring learner behaviors and 

interactions (Saxena et al., 2019). Device accessibility is enhanced through 

personalized cloud frameworks, allowing students to integrate their 

personal devices seamlessly into the learning environment, thereby 

increasing participation and tailoring educational activities to their 

preferences (Mitra and Gupta 2020). Device usage is monitored and 

analyzed using IoT technologies to adapt learning experiences based on 

how and when students interact with their devices, ensuring content 

delivery aligns with their usage patterns (Elkobaisi and Al Machot 2022). 

The educational environment is adapted through the use of virtual 

assistants, which provide structured, interactive, engaging, and accessible 

learning experiences tailored to individual needs (Reyes et al., 2019). QR 

code detection is employed in IoT-enabled environments to identify points 

of interest, enabling systems to deliver relevant teaching materials 

dynamically based on learner focus and interaction (Betts et al., 2020). 

IoT-based Personalized Online Learning (POL) systems integrate 

simulations within virtual laboratories, allowing learners to explore 

complex concepts through personalized and interactive methods. These 

simulations cater to various learning styles, leveraging multimedia 

elements to transform abstract topics into engaging educational 

experiences (Kim et al., 2019; Penn and Ramnarain 2019). Moreover, 

mobile devices act as versatile tools within these systems, supporting 

active, student-centered learning through personalized content and 

feedback (Whalley et al., 2020). 

Virtual tutors, powered by smart technologies, play a pivotal role in 

providing one-to-one guidance. These systems utilize contextual bandits 

to analyze user interactions and dynamically adapt learning paths, ensuring 

the delivery of relevant materials tailored to individual needs (Spyrou and 

Vretos, 2018). Immersive environments measure general and spatial 

presence using tools like the Igroup Presence Questionnaire (IPQ) to 

enhance learners' engagement and realism. By creating environments that 
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evoke physical and emotional immersion, these systems significantly 

improve educational outcomes (Wang et al., 2017) 

Contextual bandits within IoT-based personalized learning systems 

dynamically adapt learning paths by analyzing user interactions and 

feedback, leveraging real-time data to optimize educational outcomes. 

This ensures the presentation of the most relevant learning materials or 

tasks, aligned with individual needs and preferences (Spyrou and Vretos 

2018). 

Low-level multi-domain context is integrated into end-user 

development frameworks to enhance personalization. By collecting 

detailed data from user interactions and incorporating semantic reasoning, 

the system identifies hidden connections and delivers highly relevant 

recommendations, improving the learning experience (Corno et al., 2019). 

Socio-cultural and socio-economic contexts are also integrated into 

personalized learning systems to enhance inclusivity and relevance. For 

instance, IoT-enabled frameworks employ customized digital content 

delivery to accommodate diverse socio-cultural backgrounds, enabling 

students to access tailored educational materials at any time (Mahapatra et 

al., 2021). 

IoT-based POL systems continue advancing through innovative 

pedagogical approaches that integrate new instructional strategies, real-

time feedback mechanisms, decentralized learning environments, and 

immersive technologies. Feedback mechanisms are essential components, 

providing real-time monitoring and support for student activities. Teachers 

can observe student performance and offer immediate feedback to enhance 

engagement and address learning challenges effectively (Bondaryk et al., 

2021). Additionally, content recommendation systems use feedback data 

to refine learning materials, ensuring alignment with individual learner 

preferences and progress (Kim et al., 2019). Interactive feedback systems, 

combined with tailored teaching material design, enable real-time 

adaptation of content to match learners' needs and interests, enhancing the 

overall educational experience (Betts et al., 2020). 

Arts-based instructional strategies personalize education by addressing 

both social-emotional and cognitive outcomes, thus making online 

learning environments more interactive and humanized (Perry and 

Edwards 2019). Learning strategies incorporate intelligent systems that 

analyze learner behavior and adapt teaching methods accordingly, 

ensuring that instructional techniques align with individual learning goals 

and cognitive abilities (Ma and Li 2021). One-to-few educational 
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relationships, facilitated through virtual tutors, provide focused guidance 

and create a more personalized and supportive learning environment for 

small groups of students (Chen and Zhang 2022). Practical learning is 

promoted through IoT-based systems that facilitate hands-on activities and 

real-world applications of knowledge, enabling learners to gain deeper 

insights and apply concepts effectively (Farhan et al., 2018). Student-

driven approaches encourage learners to take control of their educational 

journey by conducting experiments, sharing insights, and exploring 

materials at their own pace (Bondaryk et al., 2021). 

Decentralized learning environments leverage personal cloud 

frameworks, allowing learners to access, store, and manage educational 

resources securely and independently. This approach supports self-paced 

learning while maintaining privacy and adaptability to individual 

preferences (Mitra and Gupta, 2020).  

The subjective experience of realism in virtual environments is another 

key component of these systems. Immersive technologies assess learners' 

sense of presence and engagement, adapting the environment to provide a 

more authentic and impactful educational experience (Wang et al., 2017). 

This section emphasizes the integration of diverse personalization 

components—behavioral, social, cognitive, physiological, demographic, 

environmental, and technological—into IoT-based POL systems, creating 

adaptive, responsive, and learner-centered educational experiences. By 

incorporating advanced tools and strategies, including biometric 

technologies, contextual and immersive personalization techniques, these 

systems enhance engagement, accessibility, adaptability, and inclusivity, 

based on learner’s profile and context, fostering dynamic educational 

environments. 

The next section will describe the machine learning algorithms used to 

process the data generated by personalization components described in this 

section to achieve more effective and real time personalization. 

4.2. Machine Learning Algorithms in IoT based POL Systems 

In IoT-based POL systems, machine learning (ML) algorithms play a 

pivotal role in processing the data streams generated by IoT devices. These 

devices, including wearables, sensors, and mobile platforms, generate real-

time data about learners’ interactions, physiological states and 

environmental conditions. The most frequently employed approaches to 
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process data generated by IoT-based POL systems, as shown in Table 10, 

are Learning Analytics (LA) and the Combination of Multiple Algorithms. 

Table 7: Algorithms used in IoT based POL Systems 

POL Algorithm 
Number 

of Studies 
Percentage 

Learning Analytics (LA) 21 32% 

Combination of Multiple Algorithms 18 28% 

Not specified 5 8% 

Natural Language Processing (NLP) 4 6% 

Classification Algorithms 3 5% 

Deep Learning 3 5% 

Rule Based Algorithms 3 5% 

Computer Vision 2 3% 

Machine-to-Machine (M2M) Interaction 

Algorithms 
2 3% 

Reinforcement learning (RL) 2 3% 

Affective Computing Algorithms 1 2% 

Cryptographic Techniques 1 2% 

In IoT based POL systems, the main Learning Analytics approaches 

include Learning Analytics Tools, Affective Computing, Context-Aware 

Learning and Educational Theories and Frameworks. Learning Analytics 

Tools include techniques such as Feature Analysis (TFA) for generating 

personalized learning tasks (Zou and Xie 2018), integration of VAK 

(Visual, Auditory Kinesthetic) learning style model, Pattern Recognition 

Algorithm, and fingerprint analysis and assigns personalized educational 

content based on learner’s learning styles (Saxena et al., 2019). 

Educational Data Mining (EDM) is also used as a method for processing, 

analyzing, and adjusting personalization components within smart learning 

systems (Betts et al., 2020).  

Affective Computing tools include Photoplethysmography (PPG) 

signals, which monitor learners' heart rate, during the learning process to 

assess their engagement and emotional states in meta-verse educational 

environment (Zhao et al., 2022). The Emotion Recognition Modeling Tool 

that can recognize, interpret and process human emotions in the context of 
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Active and Assisted Living (AAL) environments (Elkobaisi and Al 

Machot 2022) or standardized questionnaire like Myers-Briggs Type 

Indicator (MBTI) and Ortony, Clore and Collins (OCC) Model for 

personality and emotion modeling (Fatahi 2019).  

Context-Aware Learning include Intelligent Personalized Context-

Aware Learning Algorithms (Yao 2017; Louhab et al., 2019), Adaptive 

Sensor-Based Learning Algorithm (Tortorella and Graf 2017) and 

Multisensory Learning Environment Assessment (Mohana et al., 2023) to 

adjust learning experiences based on physical environmental conditions 

such as temperature, humidity, air quality and other environmental factors 

that can influence students' attention, motivation and academic 

achievement. 

The second most commonly used approach for processing data in IoT-

based POL systems is the combination of multiple algorithms. This 

approach is implemented in recommender systems where techniques such 

as Clustering (K-Means Clustering Algorithm), Classification (Instance-

Based Classifier, IBC), and Collaborative Filtering are applied to 

personalize learning experiences by recommending courses in e-learning 

environments (Rawat and Dwivedi 2019). Additionally, methods like the 

Variable Length Genetic Algorithm (VLGA), Collaborative Filtering, Ant 

Colony Optimization (ACO), and Particle Swarm Optimization (PSO) are 

combined to recommend personalized learning paths (Dwivedi et al., 

2018). Collaborative and Content-Based Filtering, along with Clustering 

and Multidimensional Similarity Evaluation, are used to recommend 

personalized learning materials (Benhamdi et al., 2017).  

In IoT based POL systems, one commonly used approach involving the 

combination of multiple algorithms is affective computing, where these 

algorithms are integrated to analyze learners’ socio-psychological 

attributes to provide POL services. For example, Attention-Scoring Model 

(ASM), Behavioral Analysis, Clustering, and Reinforcement Learning 

Algorithms are used to measure student attention during video lectures by 

analyzing facial and eye movements, as well as to analyze online student 

behaviors, such as interaction patterns, attention levels, and engagement 

with learning materials (Farhan et al., 2018). In addition, OpenCV, the 

Keras CNN model, and the TensorFlow API are sued to provide adaptive 

learning based on emotional and physiological data, such as facial emotion 

detection, eye-gaze tracking, and heartbeat monitoring (Kassab and 

Mazzara, 2020). 
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Furthermore, the combination of multiple algorithms is utilized to 

provide Multimodal Learning Analytics where Classification Algorithms 

like J48 and OneR algorithms and Rule-Based Algorithm like PART are 

combined to provide Focused on a novel engagement classification system 

(Camacho et al., 2020). Additionally, Genetic Algorithm, combined with 

Multi-classification algorithms like Bayes, C4.5, SVM are used to generate 

high-level context information based on low-level multi-domain context 

(Jia et al., 2017). 

In IoT based POL systems, Natural Language Processing (NLP) is 

utilized for creating immersive virtual learning environments through tools 

like chatbots and time machines. Some of the algorithms used are Latent 

Dirichlet Allocation (LDA) (Clarizia et al., 2018), BERT (Bidirectional 

Encoder Representations from Transformers) (Almada et al., 2023). 

Additionally, tools like OpenSimulator (Wang et al., 2017) and Google 

Dialogflow (Reyes et al., 2019) are also employed to facilitate 

personalized learning experiences. 

The most frequently employed classification algorithms include 

decision trees (C4.5, J48), K-nearest neighbors (KNN), and support vector 

machines (SVM), each serving different purposes in classification and 

prediction tasks. The support Vector Machine (SVM) Algorithm is utilized 

to analyze learners' traces by effectively modeling and classifying them to 

provide POL services in a cloud computing environment (Ghallabi et al., 

2020). The Random Forest algorithm is used for activity recognition based 

on heart rate monitoring with smartwatch sensors (Ciolacu et al., 2019). In 

addition, Heart rate variability (HRV) is analyzed with Decision Tree 

algorithms to create two classifiers: one predicts the user's happiness level 

and the other predicts how active or energetic they feel (Chiu and Ko 

2017). 

Another key approach in adaptive learning involves Deep Learning, 

specifically Convolutional Neural Network and Graph Neural Network 

(GNN), which are used to analyze and predict complex patterns from real-

time IoT data. These algorithms allow systems to respond to learners' 

cognitive and emotional states, providing feedback that optimizes the 

educational experience on a personalized level (Kim et al., 2019; Guo and 

Wang 2021).  

Rule-based learning algorithms utilize IF-THEN Rules and Learning to 

rank algorithms to create scenario-based interactive learning environments 

(Cheng et al., 2020; Corno et al., 2019). Reinforcement learning (RL) 

algorithms, such as multi-armed bandits and Q-learning, are widely used 
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to dynamically adjust learning paths by continuously updating the system's 

understanding of the learner’s needs (Elmalaki 2021).  

Computer Vision Algorithms employ facial landmark detection 

algorithm to locate specific areas of the face, which are then used to create 

a graph for facial expression analysis to infer student emotion and 

engagement (Spyrou and Vretos 2018). Machine-to-Machine (M2M) 

interaction algorithms facilitate autonomous communication between IoT 

devices, such as temperature sensors and air conditioners, to create a smart 

learning environment by adjusting conditions based on real-time data (Soni 

2019). 

Most of the analyzed studies implement a multimodal approach, 

integrating different personalization components to provide tailored 

services. Classification algorithms are generally used to classify students’ 

prior knowledge, emotions, engagement, and stress level, while clustering 

algorithms are employed to group students based on their interactions and 

behavioral patterns.  

5. DISCUSSIONS

The integration of IoT technologies in POL systems (POL) presents 

transformative opportunities to enhance education by creating adaptive, 

context-aware, and learner-centric environments. However, critical 

challenges persist that demand comprehensive evaluation and strategic 

solutions. 

One notable advancement is the leveraging of diverse personalization 

components—such as learner profiles, environmental contexts, and 

physiological data—to dynamically tailor educational experiences. The 

prevalence of IoT devices enables the real-time collection of data, 

significantly expanding the dimensions of personalization. For instance, 

integrating psychological profiles and contextual data into POL systems 

enhances learner engagement and motivation. Nevertheless, reliance on 

extensive data introduces concerns regarding data heterogeneity and 

privacy. While cryptographic techniques, anonymization, and edge 

processing offer a degree of security, their implementation in IoT-based 

POL systems remains underexplored. 

The integration of AI in IoT-based POL systems requires strict 

adherence to legal and ethical frameworks. The European Union (EU) 

categorizes the use of AI in education as a high-risk endeavor, prohibiting 

the classification of learners using biometric data, including facial 
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recognition, due to potential misuse. To comply with regulations such as 

the General Data Protection Regulation (GDPR), any biometric data used 

in machine learning processes must be securely stored and processed 

within protected environments, ensuring it is not transferred outside these 

confines. Moreover, data collection, storage, and processing must 

prioritize transparency and privacy, aligning with GDPR principles to 

safeguard learner information while fostering innovation in personalized 

education. 

Machine learning algorithms, such as learning analytics and combined 

methodologies, have proven instrumental in processing IoT-generated 

data. The systematic use of algorithms like deep learning, classification 

models, and natural language processing ensures personalized 

recommendations, adaptive content delivery, and robust learner 

classification. Despite these advancements, issues such as algorithmic bias 

and the complexity of integrating heterogeneous datasets remain. 

Addressing these challenges is crucial to ensuring equitable and effective 

personalization outcomes. 

Environmental and technological contexts integrated via IoT also offer 

innovative avenues for adaptive learning. Environmental factors like noise 

levels, temperature, and air quality can influence cognitive performance 

and engagement. However, current implementations often lack 

comprehensive frameworks to dynamically integrate these physical 

variables. Similarly, technological factors such as device compatibility and 

accessibility are pivotal in ensuring inclusive and seamless learning 

experiences. Yet, scalability and infrastructure limitations restrict their 

broader adoption. 

6. CONCLUSIONS AND FUTURE WORK

This systematic review has provided a detailed overview of the 

personalization components and ML algorithms used in IoT-based online 

learning systems by synthesizing data from 65 primary studies. It 

highlights the transformative role of IoT and ML in advancing POL 

systems to create dynamic, adaptive, and learner-centered experiences. 

The most commonly used components for personalization in IoT-based 

POL systems include learners' learning styles, prior knowledge and skill 

levels, locations, preferences, and emotions. Additionally, learners' 

psychological profiles are widely integrated into these systems. 
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The study reveals that Learning Analytics (LA) and combinations of 

multiple algorithms are the most frequently implemented approaches. 

These techniques enable the processing of diverse data streams, facilitating 

personalized learning paths, adaptive content delivery, and real-time 

feedback. While effective, challenges such as data heterogeneity, 

scalability, ethical concerns, and privacy issues remain significant barriers 

to broader implementation. Addressing these challenges is crucial to 

unlocking the full potential of IoT-based POL systems in diverse 

educational settings. 

The integration of IoT into POL systems introduces sophisticated 

algorithms that significantly enhance the personalization of the learning 

experience. A critical examination of the algorithms reveals their distinct 

roles in delivering tailored learning paths and adaptive content. The 

combination of traditional ML algorithms, such as C4.5, J48, and Genetic 

Algorithms, with IoT-generated data demonstrates the ability to create 

individualized learning experiences based on learner engagement, 

preferences, and environmental contexts. 

Future research should focus on the integration of IoT in multimodal 

learning analytics and on the personalization of physical environmental 

factors like classroom temperature and lighting, which remain under-

researched areas. These components have significant potential to influence 

learner engagement and performance, presenting a promising direction for 

further study. 

Additionally, exploring potential relationships between keywords 

(features) in the selected articles could provide valuable insights into the 

availability and existence of research that combines multiple identified 

features. 

Some pressing challenges related to IoT-based POL systems also 

require the immediate attention of researchers. These include data overload 

and processing challenges, ethical and privacy concerns, and issues related 

to scalability and infrastructure. Addressing these issues will not only 

enhance the functionality of POL systems but also ensure their ethical and 

effective application in real-world educational settings. 

Finally, the design of adaptive learning models that continuously update 

and recalibrate personalization strategies is an essential direction for future 

research. These models must dynamically respond to evolving learner 

profiles and contexts, ensuring that IoT-enabled systems remain relevant 

and effective in addressing the diverse and changing needs of learners. By 

focusing on these areas, future research can significantly advance the 
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capabilities of IoT-based POL systems, fostering more inclusive, adaptive, 

and learner-centric educational solutions. 

This study lays the groundwork for continued research into the dynamic 

integration of IoT and ML, offering the potential to revolutionize POL by 

making it more adaptive, responsive, and learner-centric. 
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