
AJNTS No 57 / 2023 (XXVIII)
121

CONTINUOUS INTEGRATION / CONTINOUS DELIVERY:

REVIEW OF CHALLENGES AND SOLUTIONS

Ina PAPADHOPULLI and Realb KUSHE

Faculty of Information Technology, Polytechnic University of

Tirana, Albania
__

ABSTRACT

There is an increasing interest in literature on continuous practices (i.e., continuous

integration, delivery, and deployment). For this reason, it is important to

systematically review the approaches, tools and challenges related to these practices.

In order to offer a “big view” of the continuous software engineering, this systematic

literature review lists the strategies proposed to address and solve these challenges.

We analyzed 46 relevant papers, filtered from four digital libraries. The

implementation of Continuous Software Engineering practices is associated with

challenges regarding the software builds, unit tests, integration tests and non-

functional ones. Several strategies have been proposed by academics to address these

challenges. In addition, tools have been developed to automate each stage of CI/CD

pipeline. The progress in the optimization of continuous software engineering

practices is inspired by the industrial needs. This Systematic Literature Review (SLR)

emphasizes that as in many other engineering problems, there is no optimal

continuous software engineering architecture to fulfil all the clients’ needs. Selection

of the right automation tool for continuous software development project depends on

the sort of project.

Keywords: continuous software engineering, continuous integration/continuous

deployment, continuous software testing

1. INTRODUCTION

The Agile methodology defines the processes used to change software

features and accelerate delivery. “DevOps culture” specifies roles and

responsibilities of each human actor in a software development project;

software developer or IT specialist, to increase their responsiveness.

Continuous software engineering focuses on tools used for automation of

software defined life-cycles (Doukoure and Mnkandla 2018). Thanks to these

122 AJNTS No 57 / 2023 (XXVIII)

practices, the gap between software development teams and operational ones

has been steadily narrowed during the past years (Felidré et al., 2019). The

three development activities are continuous integration (CI), continuous

delivery (CDE) and continuous deployment (CD). CDE means that the

software can be deployed to production at any time, whereas CD means that

the software is automatically deployed to production all the time. The

relationship between these concepts is in Figure 1 depicted (Shahin et al.,

2017).

CI/CD has the following benefits: i) software of higher quality, ii) faster

delivery of features to the customer, iii) easy to be used, simple and flexible to

the needs of customers due to the ability to change things more quickly. Javed

et al., (2020) recommended to follow various principles and best practices to

achieve these benefits:

Fig. 23: Relationship between CI, CDE and CD (Shahin et al., 2017).

More and more strategies (mainly by academic researchers) and tools

(mainly by industrial researchers) are being developed in support of each stage

of CI/CD pipeline. There are difficulties to transition to CI/CD. Even when the

team has successfully introduced the CI/CD culture, living up to its principles

and improving the CI/CD practice is also challenging (Ciancarini and

Missiroli 2020)

This SLR aims to provide a comprehensive analysis of CSE by balancing

the benefits of its applications with their related limitations. Information about

the latest research with regard could be found in (Shahin et al., 2017).

Research Questions (RQ): The study addresses three research questions:

RQ1: What are the limitations in the implementation of CI/CD stages?

RQ2: What strategies have been proposed to address CI/CD challenges?

RQ3: Which are the state-of-the-art tools for designing and implementing

the deployment pipeline?

In summary, this paper makes the following contributions:

AJNTS No 57 / 2023 (XXVIII)
123

1. An analysis of the problems that arise during the implementation of

CI/CD pipeline grouped by CI/CD stage

2. A list of solutions proposed in the last five years for the problems

addressed in RQ1.

3. A comparison of the CI/CD state-of-the-art tools

Section 2 presents the used Review Protocol. Sections 3 - 5 addressed the

three research questions. Conclusions are drawn in the end.

2 REVIEW PROTOCOL

2.1 Study Selection Process:

Metadata filtering: Research papers found in digital libraries were filtered

based on metadata indicators: title of the paper (“Is this related to CSE?”),

author names, date published with respect to inclusion and exclusion criteria

as above defined.

Abstract filtering: Once the abstract was read, papers on DevOps culture

or theoretical part of Agile methodologies were excluded from further reading.

Content-based filtering: Only papers answering to the research questions

were taken into consideration for this SLR.

In the present investigation, 46 relevant papers were systematically

identified and rigorously reviewed. In addition, synthetization of the data

extracted from these papers to answer the research questions was made.

Table 8 The evaluation of research papers during study selection process.

3. RQ1: WHAT ARE THE LIMITATIONS IN THE

IMPLEMENTATION OF CI/CD STAGES?

The challenges are divided into groups in according to the correspondent

CI/CD stage.

Search

Engine

First-time

collected

(metadata

filtering)

Included after filter application

related to:

Total

Abstract Content Repetition

of ideas

IEEE Xplore 49 43 40 29 29

ACM 23 21 16 9 9

Science

Direct

8 6 5 5 5

Scopus 5 4 3 3 3

Total 85 74 64 46 46

124 AJNTS No 57 / 2023 (XXVIII)

3.1 Problems related to Continuous Integration

Lack of frequent commits: (Pinto et al. 2018) emphasized that the most

common CI problem reported by their survey group was infrequent commits

due to time pressure. Felidré et al., (2019) said that “2.36 commits/ weekday”

is the lowest threshold value for a software development project to succeed,

independently of the project size as based on (Cavalcanti et al., 2018).

Time-consuming builds: For a large-scale software project, the build can

take hours as it includes compilation, unit and acceptance testing (Jin and

Servant 2020). Continuous submission of code modification by developers

and build latency time creates stalls at CI server build pipeline, and hence

developers have to wait long time for the build outcome (Fan, 2019). These

builds compete for system resources with other jobs waiting in the processing

queue (Bezemer 2017).

Broken builds: Builds can be unsuccessful for a variety of reasons

(Rebouc et al., 2017) points out the gap in the real-time addressing of

problematical builds between commercial projects and open-source ones.

Commercial projects tend to enter in a “fast-recovery” mode while open-

source ones seem to offer a slower but more consolidated solution for the

build failure (Avelino et al., 2016).

3.2 Problems related to “Continuous Testing” (CT)

3.2.1 Unit tests

Writing automated tests is time-consuming: DiffBlue survey

(Zalozhnev, 2017) found that software engineers, among the most expensive

talent in any company, spend 20% of their time writing unit tests and an

additional 15% of their time writing all other types of tests.

Manual testing: DiffBlue survey (Camargo et al., 2016) found manual

testing as a key bottleneck in a CI/CD pipeline. The reason is that resources

are not invested in automated testing. When asked which stage of the DevOps

pipeline respondents feel their organization places as its top priority, 51%

chose developing, with deploying in second place (24%). Testing fell in last

place (11%).

Non-deterministic automated tests and code: A considerable amount of

disturbance to CI/CD pipeline is caused by non-deterministic (flaky)

automated tests. These tests capriciously generate variable results even

without changing the isolated tested code (Gallaba 2019). Maintaining flaky

tests is costly, especially in large-scale software projects (Diffblue 2021b).

Poor test quality: Unreliable tests, high number of test cases, low test

coverage and long running tests can impede the deployment pipeline and

reduce the confidence of organizations to automatically deploy software on a

AJNTS No 57 / 2023 (XXVIII)
125

continuous basis (Shahin et al., 2017). Test-coverage is mainly limited by the

use of an old-fashion testing metric: line coverage (Kim et al., 2017).

3.2.2 Integration Tests

System heterogeneity: The complexity of CT stands in its heterogeneity:

distributed testing requires the participation of a lot of hardware resources

shared between multiple platforms. Test results can be prone to errors while

traversing the communication links especially in the master-slave architecture

(Aghamohammadi et al., 2021).

Version Control (VI): A critical point for CI is the Version Control of the

shared repository. Updates to the Version Control may trigger instability of

the system: widespread file-locking and corrupted copies of the program files

have been reported by CI processes in diverse software development projects

(Xu et al., 2019).

3.2.3 Non-functional Testing

Difficulty to automate performance tests: Developing performance

testing automation scripts is not a trivial task. Automating this process

requires strong tool support. A lack of existing tools means that performance

testing is normally left out of the scope of CI (Diffblue 2021a).

Skip security tests: Security tests in the CI stages are extremely important

as they guarantee that none of weak dependencies between entities will

process in the rest of the deployment pipeline.

3.3 Problems related to “Continuous Deployment”

Fulfill quality assurance step: Quality assurance (QA) is the final step

before pushing the software to production. The fulfillment of both

development and QA constraints is a difficult task (Parnin et al., 2017). The

implementation of a unified framework for both teams is associated with

additional costs of training project’s members for its usage.

Duplicate production environment: Creating a duplicate production

environment (shadow infrastructure) in order to enable software

experimentation and accelerate software production is costly (Macho 2017).

Different Customer Environment: Shahin et al., (2017) said that

continuously releasing software product to multiple customers with diverse

environments is quite difficult as different deployment configurations for each

customer’s environment and component’s version are needed to be

established.

Maintenance window: Service deployment, including upgrading to new

versions, rolling back to older ones, or introducing fix patches in case of a

failed deployment, can be done during a maintenance window while reusing

126 AJNTS No 57 / 2023 (XXVIII)

the infrastructure resources due to the high cost of hardware and its

maintenance (Pinto et al., 2018)

Smells in CD configuration files: Typical configuration files for

specialized build tools which depend on the programming languages are

usually too complex. This is the reason why there may be many smells in CD

pipelines like ‘Fake Success’, ‘Retry Failure’, ‘Manual Execution’ and ‘Fuzzy

Version’ (Javed et al., 2020).

4. RQ2: WHAT STRATEGIES HAVE BEEN PROPOSED TO

ADDRESS CI/CD CHALLENGES?

Several strategies have been proposed for solving the CI/CD challenges. In

order to answer to the RQ2, after analyzing the proposed solutions, we have

made a mapping between the proposed solution and the challenge it addresses

(Table 2).

Table 2. Mapping between challenges found in CI/CD pipeline and their

proposed solutions. Problem Category (PC): ① (broken builds); ② (long

running builds); ③ (Writing automated Unit tests is time-consuming); ④

(Long running unit tests); ⑤ (non-deterministic automated tests); ⑥

(Version Control); ⑦ (Difficulty to automate performance tests); ⑧

(Duplicate production environment); ⑨ (Maintenance window); ⑩ (Smells

in CD configuration files);

Solution PC Description of the solution Ref

“Filter and

flush”

architecture

① Records metadata of the previous “failed

builds” to reject builds that have crashed in

the past.

(Hassan and

Wang,2017)

“Taxonomy of

broken

builds”

Broken builds are classified based on their

cause and their impact on the project. Most

influential builds are tried to repair with

highest priority.

(Konersman

n et al.,

2020)

“Exploration

of

dependencies

between

builds”

② Proposal to use third-party tools to design

annotated graphs that study dependencies

between builds.

(Fan 2017)

“Benefit from

local

spatiality”

Builds with similar features are grouped

together and a “build agent” examines and

extracts their similarities. Builds from

different clusters run concurrently.

(Melo and

Rocio, 2017)

AJNTS No 57 / 2023 (XXVIII)
127

Build

prediction

models

Model that uses previous data to predict

whether a build will be successful or not

without attempting actual build so that

developer can get early build outcome

result.

(Yang et al.,

2018)

(Fan 2017)

Tool:

SmartBuildSk

ip

Use ML to predict the first builds in a

sequence of build failures

(Jin and

Servant,

2020)

Skip commits Automate the process of determining

which commits can be CI skipped through

the use of ML techniques

(Singh et al.,

2019)

Tool: Evosuite ③ Search Based Software Testing tool used

to automatically generate unit tests for

Java applications

(Francalino

et al., 2018)

Tool: DiffBlue

Cover

Tool that uses AI to automatically write

suites of unit tests for Java code

(Abdalkaree

m et al.,

2021)

(Diffblue

2021c)

Testing as a

Service”

④ Automated Unit tests are executed

parallelly in a distributed cloud

infrastructure.

(King et al.,

2018)

Choose a

subset of test

to execute

Use ML to predict which group of tests

should be executed after each change

submitted to the CI system.

(Islam and

Zibran,

2017)

Postpone re-

execution of

flaky test

⑤

Non-deterministic tests are marked with a

flag and re-executed after all other tests to

identify the cause of ambiguity and

dependencies that caused the failure

(Deepa et

al., 2020)

(Javed et al.,

2020)

Probabilistic

approach to

detect faulty

tests

Fault localization can be achieved by

creating a Bayesian network model that

takes into consideration a broad range of

tests metric: assertion count, test size,

cyclomatic complexity etc.

(Diffblue

2021c)

Maintenance

of VI System

⑥ VI updates should be scheduled at “off-

hours”. A trade-off should be found

between the need for on-time VI updates

and the need for the release of stable

software products.

(Williams,

2021)

(Javed et al.,

2020)

PerfCI Tool ⑦ PerfCI - helps developers to easily set up

and carry out automated performance

testing under CI

(Diffblue,

2021c)

Be fast to

deploy but

slower to

release

⑧ Combination of ‘dark launches’ and

‘feature flags’

(Macho,

2017)

128 AJNTS No 57 / 2023 (XXVIII)

Blue-Green

Deployment

Technique

⑨ Usage of Blue-Green Deployment

Technique which targets to enable service

updates with zero maintenance windows,

and thus with no disruption to the end

users

(Pinto et al.,

2018)

Tool: CD-

Linter

⑩ A semantic linter that can automatically

identify four different smells in pipeline

configuration files on GitLab.

(Javed et al.,

2020)

Tool: Xeditor Tool that extracts configuration couplings

from Deployment Descriptors, and adopts

the coupling rules to validate new /

updated files

(Wen et al.,

2020)

5. Q3: WHICH ARE THE STATE-OF-THE-ART TOOLS FOR

DESIGNING AND IMPLEMENTING THE CI/CD PIPELINE?

Choosing the right CI/CD tool is an essential part that can define the

success rate of a software development project. In this SLR, we focused on the

tools that automate the whole pipeline since they don’t require extra

synchronization with other tools.

The comparison is made based on two principles:

1. Research papers which describe the features of the CI/CD tools have

made a transparent evaluation of the tool’s metric.

2. Since there are different methods to evaluate the tools, we developed a

numerical scale to compare the set of tools.

Figure 2 shows the proposed numerical scale for the evaluation

procedure.

Fig. 2. Scoring points evaluation procedure

Features considered:

 Ease of install, ease of upgrade and backup

 If the CI/CD tool is an open-source tool or not

 If the hosting model includes both “On-premise” and “Cloud”

 If the CI/CD tool provides “test parallelization” in distributed

environments

 Graphical pipeline view

AJNTS No 57 / 2023 (XXVIII)
129

 Re-usable pipelines

Once the features information was collected from a set of research papers

on behalf of 7 CI/CD tools, the tools were compared by using the proposed

numerical scale (Table 3).

This score-based evaluation shows that TravisCI tool is the most maturated

tool for the implementation of CI/CD pipeline followed by TeamCity and

GitLab.

Table 3. Comparison of CI/CD tool.

 Jenkins TeamCity Bamboo CircleCI GitLab TravisCI GoCD

Ease of install 2 2 2 1 2 2 1

Ease of upgrade 1 2 1 1 1 2 1

Ease of backup 1 2 2 2 2 2 2

License of tool 2 1 1 2 2 2 2

Hosting model 2 1 1 2 2 1 2

Test case

parallelization

2 2 2 2 2 2 1

Reusable

Pipelines for

Microservices

2 2 1 2 1 2 2

Graphical

Pipeline View

1 2 2 1 2 2 2

Total Points 13 14 12 13 14 15 13

The features were extracted from (Souza and Silvia, 2017; Hohl et al.,

2018; Diffblue, 2021c).

6. CONCLUSIONS AND FUTURE WORK

CSE practices are being highly adopted by companies, which are

transitioning their strategy from developing stand-alone programs to offering

software as a service.

This SLR offers a bilateral analysis of both the problems that arise during

the implementation of CI/CD pipeline and their counterpart solutions. Each

phase of Continuous Development pipeline deals with implementation

challenges (Section 3). There exist many proposed solutions to local and

isolated problems, but it is hard to implement them in a vector of mixed

CI/CD problems. This SLR emphasizes that, as in many other engineering

problems, there is no optimal CSE architecture to fulfill all client’s needs.

Selection of the right automation tool is based in the nature of project.

In the present paper the tools that automate the whole CI/CD pipeline are

compared, and our score-based evaluation shows that TravisCI is the most

maturated tool.

130 AJNTS No 57 / 2023 (XXVIII)

Based on the number of papers on continuous practices that we found, we

can conclude that in the last five years there has been a high interest in this

field from academic and industrial researchers.

Several papers (i.e., 10 papers) proposed solutions based on AI techniques

as an alternative to deterministic approaches to solve difficult problems related

to CI/CD. It seems that the research is focused more on this direction.

Research papers reviewed in this systematic literature review were

extensively focused on improving the CSE pipeline. However, we found that

there is little work done for the investigation of how do bad DevOps practices

actually interfere with Continuous Software Engineering ones.

REFERENCES

Abdalkareem R, Mujahid S, Shihab E. 2021. A Machine Learning

Approach to Improve the Detection of CI Skip Commits. International Conference

on Software Engineering.

Aghamohammadi A, Mirian-Hosseinabadi SH, Jalali S. 2021. Statement

frequency coverage: A code coverage criterion for assessing test suite

effectiveness. Information and Software Technology.

Avelino G, Passos P, Hora A, Valente MT. 2016. A novel approach for

estimating truck factors. 24th IEEE International Conference on Program

Comprehension, USA, 2016.

Bezemer C.-P, McIntosh S, Adams B, German D. M, Hassan. A. E. 2017.
An empirical study of unspecified dependencies in make-based build systems.

Empirical Software Engineering (EMSE), 22(6): 317–324, 217.

Camargo A, Salvadori I, Mello S, Siqueira F. 2016. An architecture to

automate performance tests on microservices. In Proceedings of the 18th

International Conference on Information Integration and Web-based Applications

and Services (iiWAS '16). USA.

Ciancarini P, Missiroli M. 2020. The Essence of Game Development. IEEE

32nd Conference on Software Engineering Education and Training, Germany,

pp.11-14.

Deepa N, Prabadevi B, Krithika LB, Deepa B. 2020. An analysis on Version

Control Systems. International Conference on Emerging Trends in Information

Technology and Engineering (ic-ETITE), Vellore, Spain, pp. 5-9.

Diffblue. https://www.diffblue.com/ [Last accessed: 10 June 2021].

Diffblue.https://www.diffblue.com/DevOps/research_papers/2020-devops-

and-testing-report/[Last accessed: 1 September 2021].

Diffblue.https://www.diffblue.com/Education/research_papers/2019-diffblue-

developer-survey/[Last accessed: 10 June 2021].

Doukoure GAK, Mnkandla E. 2018. Facilitating management of agile and

DevOps activities: Implementation of a data consolidator. International

AJNTS No 57 / 2023 (XXVIII)
131

Conference on Advances in Big Data, Computing and Data Communication

Systems, United Kingdom.

Fan Z. 2019. A systematic evaluation of problematic tests generated by

EvoSuite. In Proceedings of the 41st International Conference on Software

Engineering.

Felidré W, Furtado LB, da Costa DA, Cartaxo B, Pinto G. 2019.
Continuous integration theater. ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM): 1-10. Porto de Galinhas, Recife,

Brazil.

Francalino W, Callado A, Matthews Jucá P. 2018. Defining and

implementing a test automation strategy in an IT Company. In Proceedings of the

Euro- American Conference on Telematics and Information Systems (EATIS'18).

Gallaba K. 2019. Improving the robustness and efficiency of continuous

integration and deployment. International Conference on Software Maintenance

and Evolution.

Hassan F, Wang X. 2017. Change-aware build prediction model for stall

avoidance in continuous integration. In 2017 ACM/IEEE (ESEM), pages 157–

162. IEEE.

Hohl P, Stupperich M, Munch J, Schneider K. 2018. Combining agile

development and software product lines in automotive: Challenges and

recommendations. IEEE (ICE/ITMC).

Islam MR, Zibran MF.2017. Insights into continuous integration build

failures. IEEE/ACM 14th International Conference on Mining Software

Repositories (MSR).

Javed O, Dawes JH, Han M, Franzoni G, Pfeiffer A, Reger G, Binder W.
2020. PerfCi: A toolchain for automated performance testing during continuous

integration of Python projects (ASE).

Jin X, Servant F. 2020. A Cost-efficient Approach to Building in Continuous

Integration. In Proceedings of the 43rd International Conference on Software

Engineering, 2020.

Kim J, Jeong H, Lee E. 2017. Failure history data-based test case

prioritization for effective regression test. Proceedings of the symposium on

applied computing.

King TM, Santiago D, Phillips J, Clarke PJ. 2018. Towards a Bayesian

network model for predicting cases of flaky automated tests. IEEE International

conference on software quality, reliability and security companion.

Konersmann M, Fitzgerald B, Goedicke M, Olsson H, Bosch J, Krusche S.

2020. Rapid continuous software engineering - State of the practice and open

research questions: SIGSOFT.

Macho C. 2017. Preventing and repairing build breakage. IEEE/ACM 39th

International Conference on Software Engineering Companion (ICSE-C), pp. 471-

475.

Melo S, Rocio S. 2017. How to test your concurrent software: an approach for

the selection of testing techniques. In Proceedings of the 4th ACM SIGPLAN

132 AJNTS No 57 / 2023 (XXVIII)

International Workshop on Software Engineering for Parallel Systems (SEPS),

New York USA, pp.42–43.

Parnin C, Helms E, Atlee C, Boughton H, Ghattas M, Glover A, Williams

L. 2017. The top 10 adages in continuous deployment. IEEE Software, 34(3): 86–

95.

Pinto G, Castor F, Bonifacio R, Rebouc M. 2018. Work practices and

challenges in continuous integration: A survey with travis CI users. Softw.,

Pract.Exper.

Rebouc M, Santos R, Pinto G, Castor F. 2017. How does contributors’

involvement influence the build status of an open-source software project? 14th

International Conference on Mining Software Repositories, pages 475–478, USA.

Shahin M, Ali Babar M, Zhu L. 2017. Continuous Integration, Delivery and

Deployment: A Systematic Review on Approaches, Tools, Challenges and

Practices, April.

Singh C, Gaba S, Kaur M, Kaur B. 2019.Comparison of Different CI/cd

tools integrated with cloud platform. 9th International Conference on Cloud

Computing, pp. 7-12.

Souza R, Silva B. 2017. Sentiment Analysis of Travis CI Builds. 2017

IEEE/ACM 14th International Conference on Mining Software Repositories

(MSR) pp. 459-462.

Wen Ch, he X, Zhang Y, Meng N. 2020. Inferring and applying Def-use like

configuration couplings in deployment descriptors. 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE): 672-683.

Williams N. 202). Towards exhaustive branch coverage with PathCrawler.

IEEE/ACM international workshop on automation of software test.

Xu, X, Cai, Q, Lin J, Pan S, Ren L. 2019. Enforcing access control in

distributed version control systems, IEEE International Conference on Multimedia

and Expo (ICME), Shanghai, China, pp. 772-777.

Yang B, Saller A, Jain S, Tomala-Reyes E, Singh M, Ramnath A. 2018.
Service Discovery based Blue-Green Deployment Technique in Cloud Native

Environments. IEEE International Conference on Services Computing (SCC), San

Francisco, CA, USA, pp. 108–121.

Zalozhnev AY. 2017. Big banks systems management software: Architecture.

General requirements and functional components. 10th International Conference

in Management of Large-Scale System Development, Moscow. 103-108.

