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ABSTRACT 

 
The present paper reports about the application of a class of incomplete cylindrical 

functions including incomplete functions of Bessel, Struve, and in particular the 

incomplete Weber exponential integrals in diffraction problems. It is shown that 

application of incomplete cylindrical functions in the diffraction of Gaussian beam by 

a system of equiareal circular sectors leads to a correct solution for the complex 

amplitude and the irradiance of the diffraction pattern. The diffraction pattern is 

observed on a parallel plane screen separated by a distance z from the plane of the 

obstacle. The problem is treated in polar coordinates ,r   on the plane of the 

diffraction obstacle, and ,   on the plane where the diffraction pattern is observed. 

Mathematical analysis shows fact that the diffractional intensity distribution 

represents a system of ellipses with the principal semi-axis parallel to the edge of the 

obstacle. 
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1. INTRODUCTION  

 

The Fresnel-Kirchhoff scalar diffraction theory is applied with appropriate 

approximations and modifications to solve the problem of diffraction by 

regular-shape apertures such as single-slit or circular aperture and diffraction 

on a half plane. This problem addresses the diffraction of a plane wave by 

such apertures, i.e., mathematically concerning the study of solutions of the 

two-dimensional wave equation which obey to the Dirichlet boundary 

conditions or Neumann boundary conditions on the edges of apertures.  
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Difficulties appear when dealing with diffraction on apertures of more 

complicated shapes where, in particular, cylindrical waves are involved. Here, 

many optical sources do not produce beams that can be approximated by a 

uniform plane wave. Therefore, it is of interest to consider modifications to 

the plane-wave diffraction theory appropriate to non-uniform beams, seeking 

solutions using incomplete cylindrical functions. In addition, the unique phase 

and spatial-amplitude variation which is characteristic of lasers makes them 

ideal sources for diffraction experiments dealing with beam-size effects.  

 

2. MATHEMATICAL CONSIDERATIONS  

 

Let us first consider some properties of general incomplete cylindrical 

functions expressed in Poisson form. In any of the integral representations for 

cylindrical functions, it is sufficient to perform the integration over only a 

portion of the contour. Any function of the form: 

 

   
1

2 21iztf z z e t dt



    

 

in which the integration is performed along an arbitrary contour represents, 

up to a constant factor, incomplete cylindrical functions (Watson 1944). We 

need to construct these functions in such a manner that, for limiting cases, 

they reduce to cylindrical functions.  

Let us consider a function of the form: 
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where  , c, and z are arbitrary complex numbers. We can select the 

contour of integration as shown in Figure 1 by the solid line. It begins at the 

point C in the complex t-plane, moves around the branch point 1t   and 

returns to the original point C. For definiteness we will assume that, as the 

contour is traversed, the argument of  2 1t   is zero at the point A and is 

equal to 2   at the point B. The resulting function 
 

 1 ,c z  is analytic in all 

the variables (Agrest and Maksimov 1972).  
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Fig. 1: Integration contours for the incomplete cylindrical function of Poisson form. 

 

In analogy, we can introduce another function 
 

 2 ,c z , in which the 

contour is shown by the dotted line (Figure 1).  

It can be verified that the sum of these functions is the Bessel function 

 J z . Thus, it is sufficient to consider only the function 
 

 1 ,c z . 

Rearranging the terms, we obtain in the w plane a function of the following 

form: 

 

  cos 2

0

2
, sin

w
iz uz

E w z e udu
A


  




      (2) 

 

For w  , the right hand side is none other than the Bessel function in 

Poisson form. For w  , on the other hand, the analytic function  ,E w z
  is 

incomplete cylindrical function of the Poisson form.  

It is also convenient to represent (2) in the following form: 

 

     , , ,E w z J w z iH w z
       (3) 

 

where for / 2w   , the right hand side represents the familiar expressions 

for Bessel and Struve functions: 
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Therefore,  ,J w z  and  ,H w z  are the incomplete Bessel function and 

the incomplete Struve function, respectively. 

Now, let us define the Weber exponential integrals. These integrals are 

improper integrals of incomplete cylindrical functions with weighting function 
2 2p xx e 

: 
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0
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      (6) 

 

Integrals of the form (6) may also be reduced to known functions. If 

2k     is an integer, then this integral can be evaluated by means of the 

incomplete modified confluent hypergeometric function: 
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yielding: 
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Setting / 2    and recalling that (Agrest and Maximov 1972): 
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 we obtain the Weber integral for Bessel functions [Watson 1944, p.432]: 
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which we employ in the problem of diffracted light by a set of circular 

sectors. 

 

3. COMPLEX AMPLITUDE OF DIFFRACTED LIGHT BY A SET 

OF CIRCULAR SECTORS 

 

We investigate the behavior of a Gaussian beam produced by a laser source 

providing a Gaussian profile, passing through a grid containing N equal 

transparent circular sectors. This problem is solved with incomplete 

cylindrical functions followed by the solution of incomplete Weber 

exponential integrals. 

Suppose that a monochromatic beam of light is incident on an obstacle 

constructed so that it contains a system of transparent and nontransparent 

circular sectors alternatively spaced, as in Figure 2. The solid angle is divided 

into 2N equal sectors (Urcid and Padila 2005), being nontransparent and 

transparent alternatively for the incident light. The incident beam has the 

amplitude with a magnitude decreasing toward the center of the obstacle. 

Suppose that the center of intersection of all the sectors is a point which is 

transparent for the incident light. On the screen placed in the distance z from 

the obstacle, a diffraction pattern is obtained on the plane parallel to the plane 

of the obstacle.  

Complex amplitude of the diffracted light with Gaussian distribution of 

amplitude is determined starting from the Fresnel-Kirchhoff’s diffraction 

formula for complex amplitude [Born and Wolf 1980], 

 

 
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iA e
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at a point P on the observation plane, where r and s are the distances from 

the source to the aperture and from the aperture to an arbitrary point P, 

respectively. Modifying this formula for complex amplitude of the diffracted 

light with Gaussian distribution of amplitude, the complex amplitude is 

determined solving the integral [Moser, Bejtullahu 1981], [Bejtullahu, 

Janicijevic, Moser and Jonoska 1984], 
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In this formula a is the distance from the obstacle to the narrowest cross-

section of the Gaussian beam of light, 
 
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the Gaussian beam at the plane of the obstacle, 
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radius of curvature of the phase surfaces of the incident Gaussian beam, 0w  is 

the minimum radius of the incident Gaussian beam (when 0a  ), 
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arctan
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k kw

 
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 
 is a phase constant depending on the parameters of the 

incident beam, and k  is the wave number. r and   are the polar coordinates 

at the plane of the obstacle, and   and   are the polar coordinates at a point 

of the diffraction plane where the intensity of the diffraction pattern is 

determined [Ishchenko 1980], [Yariv A. and Pochi Y. 2006] (see Figure 2). 

Integration must be taken over all parts transparent for the light, at the plane of 

the obstacle. Integration over the variable r must be taken over 0 to the radius 

of the obstacle R. Since R can be taken very large in comparison with the 

width of the Gaussian beam, integration over r can be taken at infinity, 

Fig. 2: For determining the complex amplitude of diffraction on a circular sector by a Gaussian beam. 
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because the transparency diminishes with the distance from the beam axis. 

Integration over the variable  ,   must be divided into N equal parts and 

then taking the summation of integrals over all the openings. 

Integral (10) can be rearranged into the form (Watson 1944): 
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In the second integral of (11), the definition formula for the unknown 

cylindrical function [Agrest and Maksimov 1972]: 
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can be used to write instead of (10): 
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Now we use the relation for incomplete cylindrical functions [Watson 

1944]: 
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where  0 ,mJ br  and  0 ,mH br  are the Bessel and Struve incomplete 

functions of zero order. Substituting into (11), it follows: 
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In relation (15) two integrals appear, called Weber’s exponential integrals 

for incomplete Bessel and Struve functions [Harris and Fripiat 2009]: 
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From (14) and (15), it follows: 
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According to [Jones 2007], we have: 
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Solution of the integral (20) yields: 

 

2

2 2 2

sin
exp Erf

22 4

mibi b
J

pp p

   
     

   

   (21) 

 

Substituting (19) and (21) into (15), the complex amplitude of the 

diffracted light is obtained. 

 

4. IRRADIANCE OF THE DIFFRACTION PATTERN 

 

To obtain the irradiance of diffraction pattern, the complex amplitude 

 , , z    must be multiplied by its complex conjugate. Since all the results 

are complex, real and imaginary parts of the expression must be separated. 

Rearranging 1J  and 2J  we can express the complex amplitude  , , z    

now separated into the real and imaginary parts, in the form: 
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where: 
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where sin
2

ib
Q

p
   is the argument of Erf function (Abramowitz and 

Stegun 1965). 

After rearranging expressions (22), (23) and (24) we obtain for the 

irradiance: 
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Since the expression for complex amplitude  , , z    is very 

complicated and cumbersome, a mathematical analysis cannot be carried out 

for this function, as well as for the function of irradiance for apertures of 

various shapes. Nevertheless, a numerical interpretation can be given only for 

the Fraunhofer case. In a special case for one sector, we obtain for the 

irradiance: 
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5. DISCUSSION 

 

Formula (26) contains three factors. The first factor, if the incident beam is 

determined, for an unchanged distance from the diffraction pattern, is a 

constant. The second factor is characteristic for Gaussian beams and shows 

that irradiance is decreasing with the distance from the center of the beam. 

Only the third factor is dependent on the variable  . If for   we take the 

special values 0 and  , then according to (47) 0Q   and this factor equals 1. 

Analysis of these results indicates the fact that diffraction fringes obtained in 
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this case are closed lines. Using a different mathematical approach, it can be 

shown that these lines are ellipses.  

 

6. CONCLUSION 

 

We have shown that making use of incomplete Bessel, Hanckel, and Struve 

cylindrical functions of the Poisson integral representation form, leading to 

Weber integrals, we can obtain the complex amplitude of the diffracted 

Gaussian beam by circular sectors, which is in accordance with previously 

obtained results by other methods (Urcid and Padila 2005). This approach can 

be beneficial to the study of the diffraction phenomena, in particular in the 

case of the Gaussian beam diffraction. The rigorous mathematical solution 

using incomplete Weber integrals allows to reveal the new qualitative 

characteristic of the diffraction on apertures of more complicated shapes. 

Formula (26), containing the three factors discussed, illustrates the possibility 

of this approach to describe diffraction phenomena in the most correct and 

instructive manner.  
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