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ABSTRACT 

 
Chiral symmetry plays a critical role in lattice QCD simulations, particularly in 

modelling strong interactions. Simulations involving chiral fermions are 

computationally demanding due to the intricacies of the chiral Dirac operator. A 

primary challenge in lattice QCD calculations is dealing with simulations that involve 

light quarks. Traditional algorithms used in these simulations are susceptible to the 

problem of critical slowing down, causing the number of iterations required by the 

algorithm to scale inversely with the quark mass. To address this issue and explore the 

development of new algorithms, we conducted simulations using U (1) theory in two 

dimensions, which shares common features and algorithms with QCD. As a result, we 

introduced a novel algorithm called the preconditioned GMRESR, which had been 

previously reported and implemented using the QCDLAB software. In this paper, we 

calculate the inversion time for various quark masses and test them against three 

coupling constants. We also compare the results with another optimal algorithm 

typically used in such simulations. In our prior research, we conducted simulations on 

smaller lattice sizes. In this current work, we extend our investigations to a larger 

lattice volume of 256 x 256. Our results demonstrate that our algorithm significantly 

reduces simulation time when dealing with light quarks, outperforming the traditional 
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algorithms by approximately 12.5 times. In conclusion, increasing the lattice volume 

yields superior results, affirming the efficiency and effectiveness of our newly 

developed algorithm. 

Keywords: inversion time, lattice QCD simulations, QCDLAB 

 

1. INTRODUCTION 

 

Quantum Chromodynamics (QCD) is the theory that describes the strong 

interactions between quarks and gluons, elucidating the physics of strong 

interactions across a range of energy regimes, from low to high energies. At 

high energies, we observe the phenomenon of asymptotic freedom in quarks, 

as highlighted in (Lüscher 2003), which allows us to employ perturbative 

calculations to understand the theory. In contrast, at low energies, quark 

confinement, first formulated by Wilson in 1974, becomes the dominant 

feature due to the strong coupling between quarks. In these low-energy 

regimes, non-perturbative methods, such as lattice QCD (LQCD) simulations 

(Wilson 1974), are necessary for analysis. Lattice QCD is a framework 

formulated on a lattice consisting of N points in both space and time. Quark 

fields are located on the lattice sites, while the gluon fields reside on the links 

connecting adjacent lattice sites. This lattice regularization of chiral fermions 

plays a pivotal role in the field of elementary particle physics. There are two 

principal methods for implementing QCD with chiral fermions on the lattice: 

domain wall fermions (Kaplan 1992; Furman and Shamir 1995) and overlap 

fermions (Narayanan and Neuberger 1993; Narayanan and Neuberger 1995), 

with the latter being closely related to the former (Boriçi 2005). Notably, the 

truncated overlap variant of domain wall fermions (Boriçi 2000), as 

demonstrated in (Boriçi 2006), is equivalent to overlap fermions in four 

dimensions. In these theories, the computation of quark propagators is 

fundamental. To construct propagators for other elementary particles, such as 

mesons and nucleons, one must combine quark propagators in a specific 

manner. As quarks are confined within hadrons and cannot be directly 

observed as physical particles, their masses must be indirectly determined. 

The primary computational challenge in lattice QCD lies in the calculation of 

the quark propagator. 

 

2. MATERIALS AND METHOD 
 

Simulations involving chiral fermions in lattice QCD are closely tied to 

the chiral Dirac operator, which is often represented by the Neuberger 

operator or the so-called overlap operator (Neuberger 1998). The 

computations of overlap quark propagators involve solving large linear 

systems of the form D∙x=b, where the operator D, a large and sparse matrix, 
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represents the overlap Dirac operator on a four-dimensional space-time lattice. 

Here, x ∈ CN denotes the quark propagator, and b ∈ CN represents the source. 

Due to the inherent complexity of this operator, addressing this problem 

necessitates highly intensive computations. 

When it comes to solving large linear systems in methods for chiral 

fermions, several optimal methods are derived from Krylov subspace methods 

(Boriçi 1996), including GMRES, CGNE, and SHUMR. However, these 

algorithms tend to experience significant slowdowns when dealing with light 

quarks and, in some cases, may even fail to converge. In Krylov inversion 

algorithms (Boriçi and Forcrand 1994; Brianzi et al., 2006; Favati et al., 

2014), the time required for inversion escalates inversely with the quark mass. 

This phenomenon, known as the "critical slowdown of algorithms," has been 

well-documented in these simulations (Schaefer and Berlin 2011; Cossu et al., 

2018; Schaefer 2011). Consequently, it is preferable to consider the case of 

lattice theory simulations for Quantum Electrodynamics, which possess U (1) 

group symmetry and are formulated in two space-time dimensions. Xhako and 

Boriçi (2014) introduced a faster inversion algorithm for chiral fermions, 

known as the preconditioned GMRESR algorithm. The key to the 

preconditioned part of this algorithm lies in the relationship between the 

overlap operator and the truncated overlap operator with a finite extra 

dimension. 

To implement the preconditioned GMRESR algorithm, we utilized a 

specialized software package called QCDLAB (Boriçi 2006; 2007). QCDLAB 

is tailored for lattice QCD algorithms and simulations, and, in our case, we 

specifically employed QCDLAB 1.0. This version of the software includes the 

Schwinger model on the lattice, exemplifying U(1) group symmetry. While 

the Schwinger model differs from full lattice QCD, it shares many similarities 

with the algorithms used in lattice QCD simulations. With this algorithm, we 

calculated the domain wall fermion propagator and utilized the truncated 

overlap operator of domain wall fermions, albeit in the context of 2+1 

dimensions, with N3 serving as the extra finite dimension. Our new algorithm 

is an additional code integrated into the QCDLAB 1.0 software, specifically 

designed for two-dimensional simulations. 

In the context of inversion algorithms, one typical test involves examining 

the convergence history of the residual norm. This test graphically displays the 

results of the residual norm as the algorithm progresses, showcasing how the 

residual norm changes with the number of Dirac operator multiplications until 

convergence is achieved. Such an analysis for the preconditioned GMRESR 

algorithm was conducted in (Hyka (Xhako) and Osmanaj (Zeqirllari), 2018). 

The current paper also provides insights into the efficiency and speed of an 

algorithm used in numerical simulations of lattice QCD. One key aspect 

examined is how the algorithm's performance scales with the quark mass. In 
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the case of optimal inversion algorithms based on Krylov methods, the time (t) 

required for inverting the chiral Dirac operator is scaled with the inverse of the 

quark mass (mq) measured in lattice units: 

 

 

                                                             (1) 

 

where k =-1 and this problem is called the critical slowing down. An 

inversion algorithm will be optimal one if the coefficient k ≈ 0, so totally 

independent from quark mass.  Equation (1) in logarithmic scale will take the 

form  . 

In our exploration of this phenomenon, we conducted computations for 

both the preconditioned GMRESR algorithm and the SHUMR algorithm, 

measuring the inversion time of the overlap operator (in seconds) for various 

quark masses. The methodology employed in this study remains consistent 

with our prior work, where we examined the critical slowing down of 

algorithms for light quark masses, as documented in (Xhako and Zeqirllari 

2019). In the realm of lattice QCD algorithm development, for a more precise 

and dependable assessment of the efficiency of the algorithm in use, it 

becomes essential to test it on a larger lattice volume. This approach brings us 

closer to the conditions encountered in continuum QCD theory and allows for 

more accurate conclusions regarding algorithm efficiency. 

 

3. RESULTS AND DISCUSSION  

 

We conducted numerical simulations using 100 different statistically 

independent gauge field configurations randomly selected from a U(1) 

background. The coupling constant of the gauge field background was 

examined across three values: β = 1.0, β = 1.1, and β = 1.2, which were 

considered sufficient for deriving conclusive results. These simulations were 

performed on a lattice volume of 256 x 256. For each of the three coupling 

constants, the calculations were carried out across a range of quark masses, 

specifically mq = [0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.01], all 

measured in lattice units. The same numerical simulations were performed for 

both the preconditioned GMRESR and the SHUMR algorithms. The 

numerical results from these simulations are presented in Tables 1 to 3, 

corresponding to the three tested values of the coupling constant: β = 1.0, β = 

1.1, and β = 1.2. Additionally, the results are visually represented in Figures 1 

to 3, as outlined in Equation (1). 
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Table 1 Inversion time of chiral operator for coupling constant β = 1.0 in 

2562 lattice 

 

No 
Quark mass 

(in Lattice Unit) 
Algorithms 

Inversion time 

(in sec.) 

1 
 

0.5 

SHUMR 

GMRESR 

101.02 

                    33.051 

2 
 

0.45 

SHUMR 

GMRESR 

103.52 

    38.155 

3 
 

0.35 

SHUMR 

GMRESR 

136.14 

      38.947 

4 
 

0.3 

SHUMR 

GMRESR 

189.94 

     40.870 

5 
 

0.25 

SHUMR 

GMRESR 

199.98 

      43.140 

6 
 

0.20 

SHUMR 

GMRESR 

295.76 

     47.231 

7 
 

0.15 

SHUMR 

GMRESR 

406.39 

      51.500 

8 
 

0.1 
SHUMR 

GMRESR 

1071.52 

      56.643 

9 
 

0.05 

SHUMR 

GMRESR 

3890.18 

       70.111 

10 
 

0.001 

SHUMR 

GMRESR 

15763.1 

       87.907 

 

Table 2 Inversion time of chiral operator for coupling constant β = 1.1 in 

2562 lattice 

 

No 
Quark Mass 

(in Lattice Unit) 
Algorithms 

Inversion Time 

(in Seconds) 

1 
 

0.5 

SHUMR 

GMRESR 

101.95 

         35.671 

2 
 

0.45 

SHUMR 

GMRESR 

110.05 

     37.182 

3 
 

0.35 

SHUMR 

GMRESR 

129.86 

      39.201 
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4 
 

0.3 

SHUMR 

GMRESR 

138.96 

      40.009 

5 
 

0.25 

SHUMR 

GMRESR 

179.82 

      40.951 

6 
 

0.20 

SHUMR 

GMRESR 

200.94 

     40.990 

7 
 

0.15 

SHUMR 

GMRESR 

278.04 

      41.250 

8 
 

0.1 
SHUMR 

GMRESR 

398.64 

     44.902 

9 
 

0.05 

SHUMR 

GMRESR 

809.34 

     52.671 

10 
 

0.001 

SHUMR 

GMRESR 

2110.13 

       64.096 

 

Table 3. Inversion time of chiral operator for coupling constant β = 1.2 in 

2562 lattice 

 

No 
Quark mass  

(in Lattice unit) 
Algorithms 

Inversion time 

(in sec.) 

1 
 

0.5 

SHUMR 

GMRESR 

116.31 

     38.096 

2 
 

0.45 

SHUMR 

GMRESR 

121.01 

      38.871 

3 
 

0.35 

SHUMR 

GMRESR 

132.84 

     40.991 

4 
 

0.3 

SHUMR 

GMRESR 

155.58 

     41.071 

5 
 

0.25 

SHUMR 

GMRESR 

199.74 

     42.781 

6 
 

0.20 

SHUMR 

GMRESR 

225.82 

     43.940 

7 
 

0.15 

SHUMR 

GMRESR 

339.15 

    44.633 

8 
 

0.1 

SHUMR 

GMRESR 

589.95 

     46.180 

9 
 

0.05 

SHUMR 

GMRESR 

924.19 

    49.230 

10 
 

0.001 

SHUMR 

GMRESR 

1443.24 

    65.817 
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Fig. 1:  The logarithmic scale of the inversion time using the preconditioned GMRESR 

and SHUMR algorithms, in 256 x 256 lattice and coupling constant 1.0. The linear fit gives k = 

- 0.093 for the preconditioned GMRESR and k = - 1.050 for SHUMR. 

 
Fig. 2: The logarithmic scale of the inversion time using the preconditioned GMRESR and 

SHUMR algorithms, in 256 x 256 lattice and coupling constant 1.1. The linear fit gives k = - 

0.084 for the preconditioned GMRESR and k = - 1.042 for SHUMR. 

 
 

Fig. 3: The logarithmic scale of the inversion time using the preconditioned GMRESR and 

SHUMR algorithms, in 256 x 256 lattice and coupling constant 1.2. The linear fit gives k = -

0.073 for the preconditioned GMRESR and k = -1.011 for SHUMR. 
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Figures 1 to 3 illustrate the relationship between the inversion time 

(measured in seconds) of the overlap chiral operator and the quark mass for 

both the preconditioned GMRESR and SHUMR algorithms. These graphs are 

presented on a logarithmic scale to determine the coefficient k. As previously 

explained, we utilized the preconditioned GMRESR and SHUMR algorithms 

on a 256 x 256 lattice with a U (1) gauge field. Across three different 

background fields, it's evident that the preconditioned GMRESR algorithm 

exhibits a significantly smaller coefficient k compared to the SHUMR 

algorithm. Table 1 demonstrates that the preconditioned GMRESR algorithm 

scales with the quark mass as ), while the SHUMR algorithm scales as 

. Consequently, the coefficient k for the SHUMR algorithm is 11.3 

times greater than for the preconditioned GMRESR algorithm at a constant β 

= 1.0. In Table 2, the preconditioned GMRESR algorithm escalates with the 

quark mass as , and the SHUMR algorithm follows a scaling law of 

. This leads to the SHUMR algorithm having a coefficient k 12.4 

times greater than that of the preconditioned GMRESR algorithm when β = 

1.1. Table 3 reveals that the preconditioned GMRESR algorithm's scaling with 

quark mass is , whereas the SHUMR algorithm scales as . 

Consequently, the coefficient k for the SHUMR algorithm is 13.8 times 

greater than that for the preconditioned GMRESR algorithm when the 

coupling constant is  = 1.2.  

 

4. CONCLUSIONS 

 

When testing our new algorithm (as introduced in Xhako and Boriçi 2014) 

on a lattice volume of 256 x 256, we observed that the coefficient k for the 

SHUMR algorithm was 12.5 times greater than that for the preconditioned 

GMRESR algorithm, across different coupling constants. In our earlier work, 

detailed in (Xhako and Zeqirllari 2019), where we used a smaller lattice 

volume, we found that the coefficient k for the SHUMR algorithm was 

approximately 4.5 times greater than that for the preconditioned GMRESR 

algorithm, also across different coupling constants. In conclusion, the 

inversion time of the chiral operator in lattice QCD simulations, when 

utilizing the preconditioned GMRESR algorithm, does not exhibit the same 

dependence on the inverse of the quark mass as observed in the SHUMR 

algorithm. Based on these results, we can confidently affirm the efficiency of 

our algorithms, even when applied to denser lattices, bringing us closer to the 

realm of continuum QCD. This suggests that the lattice QCD community can 

readily employ our algorithm in their calculations. 

 



AJNTS No 58 / 2023 (XXVIII) 
19 

5. ACKNOWLEDGMENTS 

 

The present research stands as a tribute to the life of Professor Artan 

Boriçi and his scientific legacy. All simulations were conducted using 

computers within the parallel system of the Faculty of Information 

Technology and the Department of Engineering Physics, Faculty of 

Engineering Mathematics and Engineering Physics (FIMIF) at the Polytechnic 

University of Tirana, Albania. Professor Borici's legacy and dedication to the 

field of research will be remembered and honored by the scientific 

community. 

 

REFERENCES 

 
Boriçi A. 1996. Krylov subspace methods in Lattice QCD, PhD thesis, CSCS 

TR-96-27, ETH Zurich. 

Boriçi A. 2000. Truncated overlap fermions. Nuclear Physics B - Proceeding 

Supplements. 83-84, 771-773. 

Boriçi A. 2005. Computational methods for the fermion determinant and the link 

between overlap and domain wall fermions, in QCD and Numerical Analysis III, ed. 

Boriçi et al, Springer. 

Boriçi A. 2006. QCDLAB: designing lattice QCD Algorithms with MATLAB, 

High Energy Physics - Lattice (hep-lat), arXiv:hep-lat/0610054. 

Boriçi A. 2006. Truncated Overlap Fermions: the link between overlap and 

domain wall fermions, in V. Mitrjushkin and G. Schierholz (edts.), Lattice Fermions 

and Structure of the Vacuum, Kluwer Academic Publishers. 

Boriçi A. 2007. Speeding up Domain Wall Fermion Algorithms using QCDLAB, 

Invited talk given at the 'Domain Wall Fermions at Ten Years', Brookhaven National 

Laboratory, arXiv:hep-lat/0703021. 

Boriçi A, Forcrand P. 1994. Fast Krylov space methods for calculation of quark 

propagator. In: Physics computing ’94. (1994). Proceedings, 6th Joint EPS-APS 

International Conference, PC’94, Lugano, Switzerland, pp. 711–714. arXiv: hep-

lat/9405001. 

Brianzi P, Favati P, Menchi O, Romani F. 2006, A framework for studying the 

regularizing properties of Krylov subspace methods. Inverse Problems, 22: 1007–

1021. 

Cossu G, Boyle P, Christ N, Jung Ch, Jüttner A, Sanfilippo F. 2018. Testing 

algorithms for critical slowing down. EPJ Web of Conferences 175, 02008, 

https://doi.org/10.1051/epjconf/201817502008. 

Favati P, Lotti G, Menchi O,  Romani F. 2014. Generalized Cross-

Validation applied to Conjugate Gradient for discrete ill-posed problems. Applied 

Mathematics and Computation, 243: 258–268. 

Furman V, Shamir Y. 1995. Axial symmetries in lattice QCD with Kaplan 

fermions. Nuclear Physics B, 439(1-2), 54-78. 

https://arxiv.org/search/hep-lat?searchtype=author&query=Boyle%2C+P
https://arxiv.org/search/hep-lat?searchtype=author&query=Christ%2C+N
https://arxiv.org/search/hep-lat?searchtype=author&query=Jung%2C+C
https://arxiv.org/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A
https://arxiv.org/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F
https://doi.org/10.1051/epjconf/201817502008
javascript:void(0);
javascript:void(0);


 
20 AJNTS No 58 / 2023 (XXVIII) 

Hyka (Xhako) D, Osmanaj (Zeqirllari) R. 2018. Fast algorithms for chiral 

fermions in 2 dimensions, EPJ Web of Conferences 175, 14005 

https://doi.org/10.1051/epjconf/201817514005.  

Kaplan DB. 1992. A Method for Simulating Chiral Fermions on the Lattice. 

Physics Letters B, 228 (3-4): 342-347. 

Lüscher M. 2003. Lattice QCD — from quark confinement to asymptotic 

freedom. Annales Henri Poincaré 4 (Suppl 1), 197–210. 

https://doi.org/10.1007/s00023-003-0916-z. 

Narayanan R, Neuberger H. 1993. Infinitely many regulator fields for chiral 

fermions. Phys. Lett. B 302, 62. 

Narayanan R, Neuberger H. 1995. A construction of lattice chiral gauge 

theories. Nuclear Physics B, 443 (1-2): 305. 

Neuberger H. 1998. Exactly massless quarks on the lattice. Physics Letters B, 

417(1-2): 141-144. 

Schaefer S. 2011, Algorithms for lattice QCD: progress and challenges, AIP 

Conference Proceedings 1343, 93 https://doi.org/10.1063/1.3574948. 

Schaefer S, Berlin HU. 2011. Critical slowing down and error analysis in lattice 

QCD simulations, ALPHA Collaboration Nuclear Physics B, 845 93-119 DOI: 

10.1016/j.nuclphysb.2010.11.020. 

Wilson KG. 1974. Confinement of Quarks. Physical Reviewed D, 10: 2445. 

Xhako D, Boriçi A. 2014, Fast Algorithms for Simulating Chiral Fermions in 

U(1) Lattice Gauge Theory. American Journal of Physics and Applications, 2(2): 67-

72. 

Xhako D, Zeqirllari R. 2019, Chiral Fermions Algorithms in Lattice QCD. East 

European Journal of Physics, 1: 34-39. https://doi.org/10.26565/2312-4334-2019-1-

02. 

 

 

 

https://doi.org/10.1007/s00023-003-0916-z

